Melanie A. Higgins, Xinjie Shi, Jordi Soler, Jill B. Harland, Taylor Parkkila, Nicolai Lehnert, Marc Garcia-Borràs, Yi-Ling Du, Katherine S. Ryan
{"title":"Structure and mechanism of haem-dependent nitrogen–nitrogen bond formation in piperazate synthase","authors":"Melanie A. Higgins, Xinjie Shi, Jordi Soler, Jill B. Harland, Taylor Parkkila, Nicolai Lehnert, Marc Garcia-Borràs, Yi-Ling Du, Katherine S. Ryan","doi":"10.1038/s41929-024-01280-8","DOIUrl":null,"url":null,"abstract":"<p>Molecules with nitrogen–nitrogen (N–N) bonds include diverse specialized metabolites from nature, but little is known about the underlying enzymatic mechanisms that have evolved for N–N bond formation. To directly form a single N(<i>sp</i><sup>3</sup>)–N(<i>sp</i><sup>3</sup>) bond, enzymes must reverse the typical nucleophilicity of one nitrogen. Here we report the structure of PipS, a haem-dependent enzyme that catalyses N–N bond formation in the cyclization of <i>N</i><sup>5</sup>-OH-<span>l</span>-ornithine, giving <span>l</span>-piperazic acid. Our work reveals the role of a Lys–Thr dyad early in the mechanism and shows that PipS catalyses either N–N bond formation or imine-group formation in a substrate-specific manner, which may stem from a shared nitrenoid intermediate that effectively reverses the nucleophilicity of the hydroxylamine nitrogen. Our work expands knowledge of enzymatic N–N bond formation and delineates the catalytic versatility of a haem cofactor, paving the way for genetically encoded biocatalysts for N–N bond formation.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"2 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-024-01280-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Molecules with nitrogen–nitrogen (N–N) bonds include diverse specialized metabolites from nature, but little is known about the underlying enzymatic mechanisms that have evolved for N–N bond formation. To directly form a single N(sp3)–N(sp3) bond, enzymes must reverse the typical nucleophilicity of one nitrogen. Here we report the structure of PipS, a haem-dependent enzyme that catalyses N–N bond formation in the cyclization of N5-OH-l-ornithine, giving l-piperazic acid. Our work reveals the role of a Lys–Thr dyad early in the mechanism and shows that PipS catalyses either N–N bond formation or imine-group formation in a substrate-specific manner, which may stem from a shared nitrenoid intermediate that effectively reverses the nucleophilicity of the hydroxylamine nitrogen. Our work expands knowledge of enzymatic N–N bond formation and delineates the catalytic versatility of a haem cofactor, paving the way for genetically encoded biocatalysts for N–N bond formation.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.