Oxygen vacancy order–disorder transition process during topotactic filament formation in a perovskite oxide tracked by Raman microscopy and transmission electron microscopy
Heung-Sik Park, Jinhyuk Jang, Ji Soo Lim, Jeonghun Suh, Si-Young Choi, Chan-Ho Yang
{"title":"Oxygen vacancy order–disorder transition process during topotactic filament formation in a perovskite oxide tracked by Raman microscopy and transmission electron microscopy","authors":"Heung-Sik Park, Jinhyuk Jang, Ji Soo Lim, Jeonghun Suh, Si-Young Choi, Chan-Ho Yang","doi":"10.1063/5.0212526","DOIUrl":null,"url":null,"abstract":"Vacancy-ordered perovskite oxides are attracting attention due to their diverse functions such as resistive switching, electrocatalytic activity, oxygen diffusivity, and ferroelectricity. It is important to clarify the chemical lattice strains arising from compositional changes and the associated vacancy order–disorder phase transitions at the atomic scale. Here, we elucidate the intermediate process of a topotactic phase transition in Ca-doped bismuth ferrite films consisting of alternating stacks of oxygen perovskite layers and a brownmillerite-type oxygen vacancy layer. We use Raman spectroscopy and transmission electron microscopy to closely examine the evolution of local strains exerted on the constituent sub-layers by electrochemical oxidation. A negative Raman chemical shift is observed during oxidation, which is linearly correlated with the local negative chemical expansivity of the oxygen layer. It seemingly contradicts with the general trend that oxides undergo lattice contraction upon oxidation. Oxygen vacancies initially confined in the vacancy layers can be understood to diffuse into the oxygen layers during melting of the ordered structure. The finding deepens our understanding of the electro-chemo-mechanical coupling of vacancy-ordered oxides.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"16 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0212526","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Vacancy-ordered perovskite oxides are attracting attention due to their diverse functions such as resistive switching, electrocatalytic activity, oxygen diffusivity, and ferroelectricity. It is important to clarify the chemical lattice strains arising from compositional changes and the associated vacancy order–disorder phase transitions at the atomic scale. Here, we elucidate the intermediate process of a topotactic phase transition in Ca-doped bismuth ferrite films consisting of alternating stacks of oxygen perovskite layers and a brownmillerite-type oxygen vacancy layer. We use Raman spectroscopy and transmission electron microscopy to closely examine the evolution of local strains exerted on the constituent sub-layers by electrochemical oxidation. A negative Raman chemical shift is observed during oxidation, which is linearly correlated with the local negative chemical expansivity of the oxygen layer. It seemingly contradicts with the general trend that oxides undergo lattice contraction upon oxidation. Oxygen vacancies initially confined in the vacancy layers can be understood to diffuse into the oxygen layers during melting of the ordered structure. The finding deepens our understanding of the electro-chemo-mechanical coupling of vacancy-ordered oxides.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.