Semi-Interpenetrating Hydrogel with Long-Term Intrinsic Antibacterial Properties Promotes Healing of Infected Wounds In Vivo.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-10-10 DOI:10.1021/acsabm.4c01218
Jie Wang, Yongyuan Kang, Xiaoqing Liu, Bohui Shao, Pai Peng, Wenxing Liu, Changyou Gao
{"title":"Semi-Interpenetrating Hydrogel with Long-Term Intrinsic Antibacterial Properties Promotes Healing of Infected Wounds <i>In Vivo</i>.","authors":"Jie Wang, Yongyuan Kang, Xiaoqing Liu, Bohui Shao, Pai Peng, Wenxing Liu, Changyou Gao","doi":"10.1021/acsabm.4c01218","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial infections significantly deteriorate the process of wound healing. The wound dressings loaded with antimicrobials are widely used to reduce bacterial infections. However, release-based sterilization may increase the risk of drug resistance of bacteria and complicate translation. Thus, the development of long-term intrinsic antibacterial wound dressings is highly desirable. In this study, an intrinsic antibacterial hydrogel (PVA/PPG-HBPL) consisting of poly(vinyl alcohol) (PVA), poly(polyethylene glycol methyl ether methacrylate-<i>co</i>-glycidyl methacrylate) (PPG), and hyperbranched poly-l-lysine (HBPL) was designed and fabricated. The mechanical properties of the PVA/PPG-HBPL hydrogel were enhanced by hydrogen bonding and semi-interpenetrating networks. It also possessed a favorable ability to absorb the wound exudates. The release of antibacterial HBPL was significantly decreased by the methods of cyclic freeze-thawing and covalent cross-linking during hydrogel fabrication, enabling the PVA/PPG-HBPL hydrogel with intrinsic and long-term antibacterial performance. The PVA/PPG-HBPL hydrogel dressing killed 99.9% of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) cultured on its surface without observable cytotoxicity <i>in vitro</i>. It observably shortened the healing process by 2 orders of magnitude of <i>MRSA</i> colonies compared with the control in the MRSA-infected full-thickness skin wound of rats <i>in vivo</i> even after being soaked in phosphate-buffered saline (PBS) for 21 days (PBS was changed every 3 days). The antibacterial hydrogels could kill wound bacteria in a timely manner, significantly reduce inflammatory cell infiltration, and promote neovascularization and collagen deposition.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial infections significantly deteriorate the process of wound healing. The wound dressings loaded with antimicrobials are widely used to reduce bacterial infections. However, release-based sterilization may increase the risk of drug resistance of bacteria and complicate translation. Thus, the development of long-term intrinsic antibacterial wound dressings is highly desirable. In this study, an intrinsic antibacterial hydrogel (PVA/PPG-HBPL) consisting of poly(vinyl alcohol) (PVA), poly(polyethylene glycol methyl ether methacrylate-co-glycidyl methacrylate) (PPG), and hyperbranched poly-l-lysine (HBPL) was designed and fabricated. The mechanical properties of the PVA/PPG-HBPL hydrogel were enhanced by hydrogen bonding and semi-interpenetrating networks. It also possessed a favorable ability to absorb the wound exudates. The release of antibacterial HBPL was significantly decreased by the methods of cyclic freeze-thawing and covalent cross-linking during hydrogel fabrication, enabling the PVA/PPG-HBPL hydrogel with intrinsic and long-term antibacterial performance. The PVA/PPG-HBPL hydrogel dressing killed 99.9% of methicillin-resistant Staphylococcus aureus (MRSA) cultured on its surface without observable cytotoxicity in vitro. It observably shortened the healing process by 2 orders of magnitude of MRSA colonies compared with the control in the MRSA-infected full-thickness skin wound of rats in vivo even after being soaked in phosphate-buffered saline (PBS) for 21 days (PBS was changed every 3 days). The antibacterial hydrogels could kill wound bacteria in a timely manner, significantly reduce inflammatory cell infiltration, and promote neovascularization and collagen deposition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有长期内在抗菌特性的半渗透水凝胶可促进体内感染伤口的愈合
细菌感染会严重恶化伤口愈合过程。含有抗菌剂的伤口敷料被广泛用于减少细菌感染。然而,基于释放的消毒方法可能会增加细菌产生耐药性的风险,并使翻译工作复杂化。因此,开发长期内在抗菌伤口敷料是非常可取的。本研究设计并制造了一种由聚(乙烯醇)(PVA)、聚(聚乙二醇甲醚甲基丙烯酸酯-甲基丙烯酸缩水甘油酯)(PPG)和超支化聚-l-赖氨酸(HBPL)组成的内在抗菌水凝胶(PVA/PPG-HBPL)。PVA/PPG-HBPL 水凝胶通过氢键和半互穿网络增强了机械性能。它还具有良好的吸收伤口渗出物的能力。在水凝胶制造过程中,通过循环冻融和共价交联的方法,抗菌剂 HBPL 的释放明显减少,从而使 PVA/PPG-HBPL 水凝胶具有内在和长期的抗菌性能。PVA/PPG-HBPL 水凝胶敷料能杀死 99.9% 在其表面培养的耐甲氧西林金黄色葡萄球菌 (MRSA),体外实验中无明显细胞毒性。在大鼠感染 MRSA 的全厚皮肤伤口中,即使在磷酸盐缓冲盐水(PBS)中浸泡 21 天(PBS 每 3 天更换一次),与对照组相比,MRSA 菌落的愈合过程明显缩短了 2 个数量级。抗菌水凝胶能及时杀死伤口细菌,显著减少炎症细胞浸润,促进血管新生和胶原沉积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
Therapeutic Suppression of Atherosclerotic Burden and Vulnerability via Dll4 Inhibition in Plaque Macrophages Using Dual-Targeted Liposomes. Development of an Intracellular Nitric Oxide-Donating Cell-Penetrating Polypeptide as an Immunogenic Cell Death Inducer. Semi-Interpenetrating Hydrogel with Long-Term Intrinsic Antibacterial Properties Promotes Healing of Infected Wounds In Vivo. Cytocompatible Hyperbranched Polyesters Capable of Altering the Ca2+ Signaling in Neuronal Cells In Vitro. Determination of the Optimum Architecture of Additively Manufactured Magnetic Bioactive Glass Scaffolds for Bone Tissue Engineering and Drug-Delivery Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1