Magnetoelectric nanodiscs enable wireless transgene-free neuromodulation

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nature nanotechnology Pub Date : 2024-10-11 DOI:10.1038/s41565-024-01798-9
Ye Ji Kim, Noah Kent, Emmanuel Vargas Paniagua, Nicolette Driscoll, Anthony Tabet, Florian Koehler, Elian Malkin, Ethan Frey, Marie Manthey, Atharva Sahasrabudhe, Taylor M. Cannon, Keisuke Nagao, David Mankus, Margaret Bisher, Giovanni de Nola, Abigail Lytton-Jean, Lorenzo Signorelli, Danijela Gregurec, Polina Anikeeva
{"title":"Magnetoelectric nanodiscs enable wireless transgene-free neuromodulation","authors":"Ye Ji Kim, Noah Kent, Emmanuel Vargas Paniagua, Nicolette Driscoll, Anthony Tabet, Florian Koehler, Elian Malkin, Ethan Frey, Marie Manthey, Atharva Sahasrabudhe, Taylor M. Cannon, Keisuke Nagao, David Mankus, Margaret Bisher, Giovanni de Nola, Abigail Lytton-Jean, Lorenzo Signorelli, Danijela Gregurec, Polina Anikeeva","doi":"10.1038/s41565-024-01798-9","DOIUrl":null,"url":null,"abstract":"<p>Deep brain stimulation with implanted electrodes has transformed neuroscience studies and treatment of neurological and psychiatric conditions. Discovering less invasive alternatives to deep brain stimulation could expand its clinical and research applications. Nanomaterial-mediated transduction of magnetic fields into electric potentials has been explored as a means for remote neuromodulation. Here we synthesize magnetoelectric nanodiscs (MENDs) with a core–double-shell Fe<sub>3</sub>O<sub>4</sub>–CoFe<sub>2</sub>O<sub>4</sub>–BaTiO<sub>3</sub> architecture (250 nm diameter and 50 nm thickness) with efficient magnetoelectric coupling. We find robust responses to magnetic field stimulation in neurons decorated with MENDs at a density of 1 µg mm<sup>−2</sup> despite individual-particle potentials below the neuronal excitation threshold. We propose a model for repetitive subthreshold depolarization that, combined with cable theory, supports our observations in vitro and informs magnetoelectric stimulation in vivo. Injected into the ventral tegmental area or the subthalamic nucleus of genetically intact mice at concentrations of 1 mg ml<sup>−1</sup>, MENDs enable remote control of reward or motor behaviours, respectively. These findings set the stage for mechanistic optimization of magnetoelectric neuromodulation towards applications in neuroscience research.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"30 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-024-01798-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep brain stimulation with implanted electrodes has transformed neuroscience studies and treatment of neurological and psychiatric conditions. Discovering less invasive alternatives to deep brain stimulation could expand its clinical and research applications. Nanomaterial-mediated transduction of magnetic fields into electric potentials has been explored as a means for remote neuromodulation. Here we synthesize magnetoelectric nanodiscs (MENDs) with a core–double-shell Fe3O4–CoFe2O4–BaTiO3 architecture (250 nm diameter and 50 nm thickness) with efficient magnetoelectric coupling. We find robust responses to magnetic field stimulation in neurons decorated with MENDs at a density of 1 µg mm−2 despite individual-particle potentials below the neuronal excitation threshold. We propose a model for repetitive subthreshold depolarization that, combined with cable theory, supports our observations in vitro and informs magnetoelectric stimulation in vivo. Injected into the ventral tegmental area or the subthalamic nucleus of genetically intact mice at concentrations of 1 mg ml−1, MENDs enable remote control of reward or motor behaviours, respectively. These findings set the stage for mechanistic optimization of magnetoelectric neuromodulation towards applications in neuroscience research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁电纳米圆片实现无线无转基因神经调控
通过植入电极进行深部脑刺激改变了神经科学研究以及神经和精神疾病的治疗。发现创伤较小的深部脑刺激替代方法可以扩大其临床和研究应用。纳米材料介导的磁场到电势的转换已被探索为远程神经调控的一种手段。在这里,我们合成了具有高效磁电耦合的核心-双壳 Fe3O4-CoFe2O4-BaTiO3 结构(直径 250 nm,厚度 50 nm)的磁电纳米圆片(MENDs)。我们发现,尽管单个粒子电位低于神经元的兴奋阈值,但密度为 1 µg mm-2 的 MENDs 装饰神经元对磁场刺激有很强的反应。我们提出了一个重复阈下去极化模型,该模型与电缆理论相结合,支持了我们的体外观察结果,并为体内磁电刺激提供了参考。向基因完整的小鼠腹侧被盖区或丘脑下核注射浓度为 1 毫克毫升/毫升的 MENDs,可分别实现对奖赏或运动行为的远程控制。这些发现为磁电神经调制在神经科学研究中的应用奠定了机制优化的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
期刊最新文献
The challenge of studying interfaces in battery materials Avalanche multiplication for quantum dot photodetectors with ultrahigh detectivity Vacancy-rich β-Li3N solid-state electrolyte Empowering spintronics with antiferromagnetic diodes Ultrahigh-gain colloidal quantum dot infrared avalanche photodetectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1