Ultrahigh-gain colloidal quantum dot infrared avalanche photodetectors

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nature nanotechnology Pub Date : 2024-12-18 DOI:10.1038/s41565-024-01831-x
Byeongsu Kim, Sang Yeon Lee, Hyunseok Ko, Jihyung Lee, Hyejeong Song, Sungjun Cho, Yun Hoo Kim, Min-Ho Lee, Jung-Yong Lee
{"title":"Ultrahigh-gain colloidal quantum dot infrared avalanche photodetectors","authors":"Byeongsu Kim, Sang Yeon Lee, Hyunseok Ko, Jihyung Lee, Hyejeong Song, Sungjun Cho, Yun Hoo Kim, Min-Ho Lee, Jung-Yong Lee","doi":"10.1038/s41565-024-01831-x","DOIUrl":null,"url":null,"abstract":"<p>Colloidal quantum dots (CQDs) are promising for infrared photodetectors with high detectivity and low-cost production. Although CQDs enable photoinduced charge multiplication, thermal noise in low-bandgap materials limits their performance in IR detectors. Here we present a pioneering architecture of a CQD-based infrared photodetector that uses kinetically pumped avalanche multiplication. By applying a strong electric field to a thick CQD layer (&gt;540 nm), electrons acquire kinetic energy beyond the bandgap of the CQD material, initiating kinetically pumped charge multiplication. Optimizing the dot-to-dot distance to approximately 4.1 nm improves performance by balancing impact ionization and electron hopping. Our optimized CQD-based infrared photodetector achieved a maximum multiplication gain of 85 and a peak detectivity of 1.4 × 10<sup>14</sup> Jones at 940 nm. This architecture offers potential for single-photon detection and ultrahigh detectivity applications.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"145 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-024-01831-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Colloidal quantum dots (CQDs) are promising for infrared photodetectors with high detectivity and low-cost production. Although CQDs enable photoinduced charge multiplication, thermal noise in low-bandgap materials limits their performance in IR detectors. Here we present a pioneering architecture of a CQD-based infrared photodetector that uses kinetically pumped avalanche multiplication. By applying a strong electric field to a thick CQD layer (>540 nm), electrons acquire kinetic energy beyond the bandgap of the CQD material, initiating kinetically pumped charge multiplication. Optimizing the dot-to-dot distance to approximately 4.1 nm improves performance by balancing impact ionization and electron hopping. Our optimized CQD-based infrared photodetector achieved a maximum multiplication gain of 85 and a peak detectivity of 1.4 × 1014 Jones at 940 nm. This architecture offers potential for single-photon detection and ultrahigh detectivity applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胶体量子点(CQDs)具有高探测率和低成本生产的特点,有望用于红外光探测器。虽然 CQDs 能够实现光诱导电荷倍增,但低带隙材料中的热噪声限制了其在红外探测器中的性能。在这里,我们展示了一种基于 CQD 的红外光探测器的开创性结构,它采用了动能泵雪崩倍增技术。通过对厚 CQD 层(540 纳米)施加强电场,电子获得超越 CQD 材料带隙的动能,从而启动动能泵电荷倍增。将点与点之间的距离优化为大约 4.1 纳米,可在冲击电离和电子跳跃之间取得平衡,从而提高性能。我们优化后的基于 CQD 的红外光探测器实现了 85 的最大倍增增益和 1.4 × 1014 Jones 的峰值检测率(波长 940 nm)。这种结构为单光子探测和超高探测率应用提供了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
期刊最新文献
The challenge of studying interfaces in battery materials Avalanche multiplication for quantum dot photodetectors with ultrahigh detectivity Vacancy-rich β-Li3N solid-state electrolyte Empowering spintronics with antiferromagnetic diodes Ultrahigh-gain colloidal quantum dot infrared avalanche photodetectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1