Rapid Coaggregation of Proteins Without Sequence Similarity: Possible Role of Conformational Complementarity.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2024-10-11 DOI:10.1021/acs.biochem.4c00282
Kailash Prasad Prajapati, Masihuzzaman Ansari, Shikha Mittal, Nishant Mishra, Anubhuti Bhatia, Om Prakash Mahato, Bibin Gnanadhason Anand, Karunakar Kar
{"title":"Rapid Coaggregation of Proteins Without Sequence Similarity: Possible Role of Conformational Complementarity.","authors":"Kailash Prasad Prajapati, Masihuzzaman Ansari, Shikha Mittal, Nishant Mishra, Anubhuti Bhatia, Om Prakash Mahato, Bibin Gnanadhason Anand, Karunakar Kar","doi":"10.1021/acs.biochem.4c00282","DOIUrl":null,"url":null,"abstract":"<p><p>Despite extensive research on the sequence-determined self-assembly of both pathogenic and nonpathogenic proteins, the question of how the sequence identity would influence the coassembly or cross-seeding of diverse proteins without distinct sequence similarity remains largely unanswered. Here, we demonstrate that the rapid coaggregation of proteins with negligible sequence similarity is fundamentally governed by preferred heteromeric interactions between their partially unfolded states via the gain of additional charge complementarity and hydrophobic interactions. The partial loss of intramolecular interactions and concurrent gain of non-native intrinsically disordered regions with sticky groups become crucial for both aggressive heteromeric primary nucleation and secondary nucleation events. The results signify the direct relevance of sequence-independent conformational cross-talk between diverse proteins to the foundational events required for the growth of biological multiprotein amyloid deposits.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00282","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite extensive research on the sequence-determined self-assembly of both pathogenic and nonpathogenic proteins, the question of how the sequence identity would influence the coassembly or cross-seeding of diverse proteins without distinct sequence similarity remains largely unanswered. Here, we demonstrate that the rapid coaggregation of proteins with negligible sequence similarity is fundamentally governed by preferred heteromeric interactions between their partially unfolded states via the gain of additional charge complementarity and hydrophobic interactions. The partial loss of intramolecular interactions and concurrent gain of non-native intrinsically disordered regions with sticky groups become crucial for both aggressive heteromeric primary nucleation and secondary nucleation events. The results signify the direct relevance of sequence-independent conformational cross-talk between diverse proteins to the foundational events required for the growth of biological multiprotein amyloid deposits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无序列相似性蛋白质的快速聚集:构象互补的可能作用
尽管对致病性和非致病性蛋白质由序列决定的自组装进行了广泛的研究,但序列同一性如何影响无明显序列相似性的不同蛋白质的共组装或交叉播种这一问题在很大程度上仍未得到解答。在这里,我们证明了序列相似性可忽略不计的蛋白质的快速聚集从根本上是由它们部分折叠状态之间的优先异构体相互作用通过获得额外的电荷互补性和疏水相互作用所支配的。分子内相互作用的部分丧失和带有粘性基团的非本地固有无序区域的同时获得,对于积极的异构体初级成核和次级成核事件都至关重要。这些结果表明,不同蛋白质之间与序列无关的构象交叉对话与生物多蛋白淀粉样沉积物生长所需的基础事件直接相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Issue Publication Information Rapid Coaggregation of Proteins Without Sequence Similarity: Possible Role of Conformational Complementarity. Delivery Aspects for Implementing siRNA Therapeutics for Blood Diseases. Effect of Pathogenic Mutations on the Formation of High-Order Dynamin 2 Assemblies in Living Cells. Recurrent Neurodevelopmentally Associated Variants of the Pre-mRNA Splicing Factor U2AF2 Alter RNA Binding Affinities and Interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1