Acoustic black hole effect enhanced micro-manipulator.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Microsystems & Nanoengineering Pub Date : 2024-10-12 DOI:10.1038/s41378-024-00789-z
Qiu Yin, Haoyong Song, Zhaolong Wang, Zhichao Ma, Wenming Zhang
{"title":"Acoustic black hole effect enhanced micro-manipulator.","authors":"Qiu Yin, Haoyong Song, Zhaolong Wang, Zhichao Ma, Wenming Zhang","doi":"10.1038/s41378-024-00789-z","DOIUrl":null,"url":null,"abstract":"<p><p>Microparticle manipulation is a critical concern across various fields including microfabrication, flexible electronics and tissue engineering. Acoustic-activated sharp structures have been designed as simple and flexible tools to manipulate microparticles with their good compatibility, fast response, and broad tunability. However, there still lacks rational acoustic-structure design for effective energy concentration at the acoustic-activated sharp structures for microparticle manipulation. Here, we present the acoustic black hole (ABH) effect as enhancement for the acoustic micro-manipulator. It provides great reliability, simplicity and ease of use, supporting custom design of high-throughput patterning modes. Moreover, compared to commonly used configurations, such as cylindrical or conical microneedles, those microneedles with ABH profile exhibit superior acoustic energy focusing at the tip and induce stronger acoustofluidic effects. The average acoustic flow velocity induced by the ABH microneedle is 154 times greater than that of the conical one and 45 times greater than that of the cylindrical microneedle. Besides, the average acoustic radiation force (ARF) produced by the ABH microneedle against acrylic microparticles is about 319 times greater than that of the cylindrical one and 16 times greater than that of the conical one. These results indicate that ABH design significantly enhances microparticle manipulation. We demonstrate this concept with ABH effect enhanced microparticle manipulation and study the parameters influencing its performance including operating frequency, operating voltage and particle diameter. Furthermore, considering the flexibility of this system, we employ it for various patterning and high-throughput microparticle manipulation. This work paves the way for controllable microparticle manipulation, holding great potential for applications in microfabrication and biomedicine.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"144"},"PeriodicalIF":7.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470035/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00789-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Microparticle manipulation is a critical concern across various fields including microfabrication, flexible electronics and tissue engineering. Acoustic-activated sharp structures have been designed as simple and flexible tools to manipulate microparticles with their good compatibility, fast response, and broad tunability. However, there still lacks rational acoustic-structure design for effective energy concentration at the acoustic-activated sharp structures for microparticle manipulation. Here, we present the acoustic black hole (ABH) effect as enhancement for the acoustic micro-manipulator. It provides great reliability, simplicity and ease of use, supporting custom design of high-throughput patterning modes. Moreover, compared to commonly used configurations, such as cylindrical or conical microneedles, those microneedles with ABH profile exhibit superior acoustic energy focusing at the tip and induce stronger acoustofluidic effects. The average acoustic flow velocity induced by the ABH microneedle is 154 times greater than that of the conical one and 45 times greater than that of the cylindrical microneedle. Besides, the average acoustic radiation force (ARF) produced by the ABH microneedle against acrylic microparticles is about 319 times greater than that of the cylindrical one and 16 times greater than that of the conical one. These results indicate that ABH design significantly enhances microparticle manipulation. We demonstrate this concept with ABH effect enhanced microparticle manipulation and study the parameters influencing its performance including operating frequency, operating voltage and particle diameter. Furthermore, considering the flexibility of this system, we employ it for various patterning and high-throughput microparticle manipulation. This work paves the way for controllable microparticle manipulation, holding great potential for applications in microfabrication and biomedicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声学黑洞效应增强型微型操纵器
微粒操纵是微细加工、柔性电子和组织工程等各个领域的关键问题。声激活尖锐结构具有良好的兼容性、快速响应和广泛的可调性,已被设计为操纵微颗粒的简单而灵活的工具。然而,目前仍缺乏合理的声学结构设计,以在声激活尖锐结构上实现有效的能量集中,从而操纵微颗粒。在这里,我们提出了声学黑洞效应(ABH)作为声学微操纵器的增强技术。它具有极高的可靠性、简易性和易用性,支持高通量图案模式的定制设计。此外,与圆柱形或圆锥形微针等常用配置相比,具有 ABH 剖面的微针在顶端表现出卓越的声能聚焦效果,并能诱发更强的声流体效应。ABH 形微针诱导的平均声波流速是锥形微针的 154 倍,是圆柱形微针的 45 倍。此外,ABH 微针对丙烯酸微颗粒产生的平均声辐射力(ARF)是圆柱形微针的 319 倍,是圆锥形微针的 16 倍。这些结果表明,ABH 设计大大增强了微颗粒的操控性。我们用 ABH 效应增强型微粒操纵演示了这一概念,并研究了影响其性能的参数,包括工作频率、工作电压和微粒直径。此外,考虑到该系统的灵活性,我们将其用于各种图案化和高通量微粒操纵。这项工作为可控微粒操纵铺平了道路,在微加工和生物医学领域具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
期刊最新文献
Single-cell electro-mechanical shear flow deformability cytometry. Automating life science labs at the single-cell level through precise ultrasonic liquid sample ejection: PULSE. Bifunctional nanoprobe for simultaneous detection of intracellular reactive oxygen species and temperature in single cells. Sound innovations for biofabrication and tissue engineering. A novel gyroscope based on the slow surface acoustic wave in a phononic metamaterial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1