Astrophysical Tests of General Relativity

IF 0.6 4区 物理与天体物理 Q4 PHYSICS, PARTICLES & FIELDS Physics of Particles and Nuclei Pub Date : 2024-10-09 DOI:10.1134/S1063779624701028
A. F. Zakharov
{"title":"Astrophysical Tests of General Relativity","authors":"A. F. Zakharov","doi":"10.1134/S1063779624701028","DOIUrl":null,"url":null,"abstract":"<p>At the initial stage of its development, general relativity (GR) was verified and confirmed in a weak gravitational field limit. However, with the development of astronomical observation technologies, GR predictions in a strong gravitational field began to be discussed and confirmed, such as the profile of the X-ray iron <span>\\(K\\alpha \\)</span> line (in the case if the emission region is very close to the event horizon), the trajectories of stars near black holes and the shapes and sizes of shadows of supermassive black holes in M87* and Sgr A*. In 2005 it was predicted that a shadow formed near a supermassive black hole at the Galactic Center could be reconstructed from observations of ground based global VLBI system or ground—space interferometer acting in mm or sub-mm bands. In 2022 this prediction was confirmed since the Event Horizon Telescope (EHT) collaboration reported about a shadow reconstructions for Sgr A*. In 2019 the EHT collaboration presented the first image reconstruction around the shadow for the supermassive black hole in M87. In 2021 the EHT collaboration constrained parameters (“charges”) of spherical symmetrical metrics of black holes from an allowed interval for shadow radius. In 2022 the EHT collaboration constrained charges of metrics for the supermassive black hole at the Galactic Center. Earlier, we obtained analytical expressions for the shadow radius as a function of charge (including a tidal one) in the case of Reissner–Nordström metric. Based on results of the shadow size evaluation for M87* done by the EHT collaboration we constrained a tidal charge. We discussed opportunities to use shadows to test alternative theories of gravity and alternative models for galactic centers.</p>","PeriodicalId":729,"journal":{"name":"Physics of Particles and Nuclei","volume":"55 6","pages":"1413 - 1419"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1063779624701028.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Particles and Nuclei","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063779624701028","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

At the initial stage of its development, general relativity (GR) was verified and confirmed in a weak gravitational field limit. However, with the development of astronomical observation technologies, GR predictions in a strong gravitational field began to be discussed and confirmed, such as the profile of the X-ray iron \(K\alpha \) line (in the case if the emission region is very close to the event horizon), the trajectories of stars near black holes and the shapes and sizes of shadows of supermassive black holes in M87* and Sgr A*. In 2005 it was predicted that a shadow formed near a supermassive black hole at the Galactic Center could be reconstructed from observations of ground based global VLBI system or ground—space interferometer acting in mm or sub-mm bands. In 2022 this prediction was confirmed since the Event Horizon Telescope (EHT) collaboration reported about a shadow reconstructions for Sgr A*. In 2019 the EHT collaboration presented the first image reconstruction around the shadow for the supermassive black hole in M87. In 2021 the EHT collaboration constrained parameters (“charges”) of spherical symmetrical metrics of black holes from an allowed interval for shadow radius. In 2022 the EHT collaboration constrained charges of metrics for the supermassive black hole at the Galactic Center. Earlier, we obtained analytical expressions for the shadow radius as a function of charge (including a tidal one) in the case of Reissner–Nordström metric. Based on results of the shadow size evaluation for M87* done by the EHT collaboration we constrained a tidal charge. We discussed opportunities to use shadows to test alternative theories of gravity and alternative models for galactic centers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义相对论的天体物理学检验
广义相对论(GR)在其发展初期是在弱引力场极限下得到验证和确认的。然而,随着天文观测技术的发展,广义相对论在强引力场下的预言开始被讨论和证实,比如X射线铁(K\alpha \)线的轮廓(在发射区非常接近事件视界的情况下)、黑洞附近恒星的轨迹以及M87*和Sgr A*中超大质量黑洞阴影的形状和大小。2005 年,根据预测,银河系中心超大质量黑洞附近形成的阴影可以通过地面全球 VLBI 系统或地面空间干涉仪在毫米或亚毫米波段的观测来重建。2022 年,这一预测得到了证实,因为地平线事件望远镜(EHT)合作组织报告了 Sgr A* 的阴影重建情况。2019 年,EHT 合作项目首次提出了 M87 超大质量黑洞阴影周围的图像重建。2021 年,EHT 合作小组根据阴影半径的允许区间,对黑洞的球对称度量参数("电荷")进行了约束。2022 年,EHT 合作项目对银河系中心的超大质量黑洞的度量参数进行了约束。早些时候,我们获得了赖斯纳-诺德斯特伦度量情况下阴影半径与电荷(包括潮汐电荷)函数的解析表达式。基于EHT合作项目对M87*阴影大小的评估结果,我们对潮汐电荷进行了约束。我们讨论了利用阴影测试其他引力理论和其他星系中心模型的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics of Particles and Nuclei
Physics of Particles and Nuclei 物理-物理:粒子与场物理
CiteScore
1.00
自引率
0.00%
发文量
116
审稿时长
6-12 weeks
期刊介绍: The journal Fizika Elementarnykh Chastits i Atomnogo Yadr of the Joint Institute for Nuclear Research (JINR, Dubna) was founded by Academician N.N. Bogolyubov in August 1969. The Editors-in-chief of the journal were Academician N.N. Bogolyubov (1970–1992) and Academician A.M. Baldin (1992–2001). Its English translation, Physics of Particles and Nuclei, appears simultaneously with the original Russian-language edition. Published by leading physicists from the JINR member states, as well as by scientists from other countries, review articles in this journal examine problems of elementary particle physics, nuclear physics, condensed matter physics, experimental data processing, accelerators and related instrumentation ecology and radiology.
期刊最新文献
Introduction to Nonlocal Field Theory Including Gravity Dark Matter Explained in Terms of a Gluonic Bose–Einstein Condensate in an Anti-de Sitter Geometry Testing General Relativity with Black Hole X-Ray Data Mutual Dependence between a Bosonic Black Hole and Dark Matter and the Explanation of Asymptotically Flat Galaxy Rotation Curves Contextual Realism in Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1