{"title":"Effects of chromatic dispersion on single-photon temporal wave functions in quantum communications","authors":"Artur Czerwinski, Xiangji Cai, Saeed Haddadi","doi":"10.1007/s11128-024-04551-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigate the effects of chromatic dispersion on single-photon temporal wave functions (TWFs) in the context of quantum communications. Departing from classical beam analysis, we focus on the temporal shape of single photons, specifically exploring generalized Gaussian modes. From this foundation, we introduce chirped and unchirped Gaussian TWFs, demonstrating the impact of the chirp parameter in mitigating chromatic dispersion effects. Furthermore, we extend our investigation to time-bin qubits, a topic of ongoing research relevance. By exploring the interplay of dispersion effects on qubit interference patterns, we contribute essential insights to quantum information processing. This comprehensive analysis considers various parameters, introducing a level of complexity not previously explored in the context of dispersion management. We demonstrate the relationships between different quantities and their impact on the spreading of TWFs. Our results not only deepen the theoretical understanding of single-photon TWFs but also offer practical guidelines for system designers to optimize symbol rates in quantum communications.\n</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-024-04551-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04551-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigate the effects of chromatic dispersion on single-photon temporal wave functions (TWFs) in the context of quantum communications. Departing from classical beam analysis, we focus on the temporal shape of single photons, specifically exploring generalized Gaussian modes. From this foundation, we introduce chirped and unchirped Gaussian TWFs, demonstrating the impact of the chirp parameter in mitigating chromatic dispersion effects. Furthermore, we extend our investigation to time-bin qubits, a topic of ongoing research relevance. By exploring the interplay of dispersion effects on qubit interference patterns, we contribute essential insights to quantum information processing. This comprehensive analysis considers various parameters, introducing a level of complexity not previously explored in the context of dispersion management. We demonstrate the relationships between different quantities and their impact on the spreading of TWFs. Our results not only deepen the theoretical understanding of single-photon TWFs but also offer practical guidelines for system designers to optimize symbol rates in quantum communications.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.