Álvaro M. Aparicio-Morales, Enrique Moguel, Luis Mariano Bibbo, Alejandro Fernandez, Jose Garcia-Alonso, Juan M. Murillo
{"title":"An overview of quantum software engineering in Latin America","authors":"Álvaro M. Aparicio-Morales, Enrique Moguel, Luis Mariano Bibbo, Alejandro Fernandez, Jose Garcia-Alonso, Juan M. Murillo","doi":"10.1007/s11128-024-04586-5","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum computing represents a revolutionary computational paradigm with the potential to address challenges beyond classical computers’ capabilities. The development of robust quantum software is indispensable to unlock the full potential of quantum computing. Like classical software, quantum software is expected to be complex and extensive, needing the establishment of a specialized field known as Quantum Software Engineering. Recognizing the regional focus on Latin America within this special issue, we have boarded on an in-depth inquiry encompassing a systematic mapping study of existing literature and a comprehensive survey of experts in the field. This rigorous research effort aims to illuminate the current landscape of Quantum Software Engineering initiatives undertaken by universities, research institutes, and companies across Latin America. This exhaustive study aims to provide information on the progress, challenges, and opportunities in Quantum Software Engineering in the Latin American context. By promoting a more in-depth understanding of cutting-edge developments in this burgeoning field, our research aims to serve as a potential stimulus to initiate pioneering initiatives and encourage collaborative efforts among Latin American researchers.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-024-04586-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04586-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum computing represents a revolutionary computational paradigm with the potential to address challenges beyond classical computers’ capabilities. The development of robust quantum software is indispensable to unlock the full potential of quantum computing. Like classical software, quantum software is expected to be complex and extensive, needing the establishment of a specialized field known as Quantum Software Engineering. Recognizing the regional focus on Latin America within this special issue, we have boarded on an in-depth inquiry encompassing a systematic mapping study of existing literature and a comprehensive survey of experts in the field. This rigorous research effort aims to illuminate the current landscape of Quantum Software Engineering initiatives undertaken by universities, research institutes, and companies across Latin America. This exhaustive study aims to provide information on the progress, challenges, and opportunities in Quantum Software Engineering in the Latin American context. By promoting a more in-depth understanding of cutting-edge developments in this burgeoning field, our research aims to serve as a potential stimulus to initiate pioneering initiatives and encourage collaborative efforts among Latin American researchers.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.