{"title":"Stretchable hybrid electronic network-based e-skin for proximity and multifunctional tactile sensing","authors":"Xiaohong Wen, Zengcai Zhao, Yuchang Chen, Xinzhi Shan, Xuefeng Zhao, Xiumin Gao, Songlin Zhuang","doi":"10.1007/s42114-024-00959-7","DOIUrl":null,"url":null,"abstract":"<div><p>Multifunctional integrated flexible electronic skin (e-skin) is the essential medium for information exchange between humans and machines. Especially, the proximity/pressure/strain sensing has become a technological goal for various emerging wearable electronic devices, such as biomonitoring devices, smart electronics, augmented reality, and prosthetics. Herein, a stretchable hybrid electronic network-based e-skin is presented, fabricated by embedding 3D hollow MXene spheres/Ag NWs hybrid nanocomposite into PDMS, which can effectively avoid the electrode falling off due to stress concentration. This e-skin works in noncontact mode (proximity-negative capacitance) and contact mode (pressure-positive capacitance and strain-resistance) for multiplex detection of random external force stimuli without mutual interference. The macroscopic physical structure of stretchable electrodes and the microscopic hybrid three-dimensional conductive network jointly contribute to the good sensing performance of the device. This work provides an effective and universal strategy for the application of wearable intelligent electronic products that demand noncontact interaction and multimodal tactile perception.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00959-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Multifunctional integrated flexible electronic skin (e-skin) is the essential medium for information exchange between humans and machines. Especially, the proximity/pressure/strain sensing has become a technological goal for various emerging wearable electronic devices, such as biomonitoring devices, smart electronics, augmented reality, and prosthetics. Herein, a stretchable hybrid electronic network-based e-skin is presented, fabricated by embedding 3D hollow MXene spheres/Ag NWs hybrid nanocomposite into PDMS, which can effectively avoid the electrode falling off due to stress concentration. This e-skin works in noncontact mode (proximity-negative capacitance) and contact mode (pressure-positive capacitance and strain-resistance) for multiplex detection of random external force stimuli without mutual interference. The macroscopic physical structure of stretchable electrodes and the microscopic hybrid three-dimensional conductive network jointly contribute to the good sensing performance of the device. This work provides an effective and universal strategy for the application of wearable intelligent electronic products that demand noncontact interaction and multimodal tactile perception.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.