A binary-domain recurrent-like architecture-based dynamic graph neural network

Zi-chao Chen, Sui Lin
{"title":"A binary-domain recurrent-like architecture-based dynamic graph neural network","authors":"Zi-chao Chen,&nbsp;Sui Lin","doi":"10.1007/s43684-024-00067-9","DOIUrl":null,"url":null,"abstract":"<div><p>The integration of Dynamic Graph Neural Networks (DGNNs) with Smart Manufacturing is crucial as it enables real-time, adaptive analysis of complex data, leading to enhanced predictive accuracy and operational efficiency in industrial environments. To address the problem of poor combination effect and low prediction accuracy of current dynamic graph neural networks in spatial and temporal domains, and over-smoothing caused by traditional graph neural networks, a dynamic graph prediction method based on spatiotemporal binary-domain recurrent-like architecture is proposed: Binary Domain Graph Neural Network (BDGNN). The proposed model begins by utilizing a modified Graph Convolutional Network (GCN) without an activation function to extract meaningful graph topology information, ensuring non-redundant embeddings. In the temporal domain, Recurrent Neural Network (RNN) and residual systems are employed to facilitate the transfer of dynamic graph node information between learner weights, aiming to mitigate the impact of noise within the graph sequence. In the spatial domain, the AdaBoost (Adaptive Boosting) algorithm is applied to replace the traditional approach of stacking layers in a graph neural network. This allows for the utilization of multiple independent graph learners, enabling the extraction of higher-order neighborhood information and alleviating the issue of over-smoothing. The efficacy of BDGNN is evaluated through a series of experiments, with performance metrics including Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR) for link prediction tasks, as well as metrics for traffic speed regression tasks across diverse test sets. Compared with other models, the better experiments results demonstrate that BDGNN model can not only better integrate the connection between time and space information, but also extract higher-order neighbor information to alleviate the over-smoothing phenomenon of the original GCN.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00067-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-024-00067-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of Dynamic Graph Neural Networks (DGNNs) with Smart Manufacturing is crucial as it enables real-time, adaptive analysis of complex data, leading to enhanced predictive accuracy and operational efficiency in industrial environments. To address the problem of poor combination effect and low prediction accuracy of current dynamic graph neural networks in spatial and temporal domains, and over-smoothing caused by traditional graph neural networks, a dynamic graph prediction method based on spatiotemporal binary-domain recurrent-like architecture is proposed: Binary Domain Graph Neural Network (BDGNN). The proposed model begins by utilizing a modified Graph Convolutional Network (GCN) without an activation function to extract meaningful graph topology information, ensuring non-redundant embeddings. In the temporal domain, Recurrent Neural Network (RNN) and residual systems are employed to facilitate the transfer of dynamic graph node information between learner weights, aiming to mitigate the impact of noise within the graph sequence. In the spatial domain, the AdaBoost (Adaptive Boosting) algorithm is applied to replace the traditional approach of stacking layers in a graph neural network. This allows for the utilization of multiple independent graph learners, enabling the extraction of higher-order neighborhood information and alleviating the issue of over-smoothing. The efficacy of BDGNN is evaluated through a series of experiments, with performance metrics including Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR) for link prediction tasks, as well as metrics for traffic speed regression tasks across diverse test sets. Compared with other models, the better experiments results demonstrate that BDGNN model can not only better integrate the connection between time and space information, but also extract higher-order neighbor information to alleviate the over-smoothing phenomenon of the original GCN.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二元域循环结构的动态图神经网络
动态图神经网络(DGNN)与智能制造的整合至关重要,因为它可以对复杂数据进行实时、自适应分析,从而提高工业环境中的预测精度和运营效率。针对目前动态图神经网络在空间和时间域的组合效果差、预测精度低,以及传统图神经网络导致的过度平滑问题,提出了一种基于时空二元域递归式结构的动态图预测方法:二元域图神经网络(BDGNN)。所提出的模型首先利用无激活函数的改进型图卷积网络(GCN)来提取有意义的图拓扑信息,确保无冗余嵌入。在时间域,采用循环神经网络(RNN)和残差系统来促进学习器权重之间动态图形节点信息的传递,旨在减轻图形序列中噪声的影响。在空间领域,采用 AdaBoost(自适应提升)算法来取代图神经网络中层层堆叠的传统方法。这样就可以利用多个独立的图学习器,提取更高阶的邻域信息,缓解过度平滑问题。通过一系列实验对 BDGNN 的功效进行了评估,性能指标包括链路预测任务的平均精度(MAP)和平均互斥等级(MRR),以及不同测试集中流量速度回归任务的指标。与其他模型相比,较好的实验结果表明,BDGNN 模型不仅能更好地整合时间和空间信息之间的联系,还能提取高阶邻域信息,缓解原始 GCN 的过度平滑现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Stabilization of nonlinear safety-critical systems by relaxed converse Lyapunov-barrier approach and its applications in robotic systems Pedestrian safety alarm system based on binocular distance measurement for trucks using recognition feature analysis Multi-objective optimal trajectory planning for manipulators based on CMOSPBO A multi-step regularity assessment and joint prediction system for ordering time series based on entropy and deep learning Life cycle assessment of metal powder production: a Bayesian stochastic Kriging model-based autonomous estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1