Zheng Yan Li, Bin Kai Li, Mao-Yong He, Xue Qin Wen, Jiang Di Zhou
{"title":"The source of lithium in Lakkor Co Salt Lake on Qinghai-Tibet Plateau, China: evidence from hydrochemical characteristics and boron isotope","authors":"Zheng Yan Li, Bin Kai Li, Mao-Yong He, Xue Qin Wen, Jiang Di Zhou","doi":"10.1007/s11631-024-00697-z","DOIUrl":null,"url":null,"abstract":"<div><p>The availability of lithium resources is of great significance for the development of modern technologies, as well as for civil and military industries. The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes. However, the specific origin of lithium in these lakes is still unknown, which hinders the advancement of the lithium resource business in this region. To research this issue, this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau, encompassing samples of surface brine, cold springs, fresh lakes, and recharge rivers. The composition of anions and cations in these samples was determined. Furthermore, the analysis extensively utilized the Piper three-line diagram, Gibbs model, and ion proportion coefficient. The findings of this study indicate that as the moves from the recharge water system to salt lake, there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate, as well as Na sulfate. This research based on a similar source of both lithium and boron, utilized ion correlation analysis and boron isotope study in the Lakkor Co area, and analyzed the source and transporting process of lithium. The main origin of lithium in Lakkor Co is the dissolution of lithium-rich rocks, recharge water systems, and deep hydrothermal fluids. These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"43 5","pages":"933 - 946"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geochimica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11631-024-00697-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The availability of lithium resources is of great significance for the development of modern technologies, as well as for civil and military industries. The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes. However, the specific origin of lithium in these lakes is still unknown, which hinders the advancement of the lithium resource business in this region. To research this issue, this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau, encompassing samples of surface brine, cold springs, fresh lakes, and recharge rivers. The composition of anions and cations in these samples was determined. Furthermore, the analysis extensively utilized the Piper three-line diagram, Gibbs model, and ion proportion coefficient. The findings of this study indicate that as the moves from the recharge water system to salt lake, there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate, as well as Na sulfate. This research based on a similar source of both lithium and boron, utilized ion correlation analysis and boron isotope study in the Lakkor Co area, and analyzed the source and transporting process of lithium. The main origin of lithium in Lakkor Co is the dissolution of lithium-rich rocks, recharge water systems, and deep hydrothermal fluids. These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits.
期刊介绍:
Acta Geochimica serves as the international forum for essential research on geochemistry, the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth‘s crust, its oceans and the entire Solar System, as well as a number of processes including mantle convection, the formation of planets and the origins of granite and basalt. The journal focuses on, but is not limited to the following aspects:
• Cosmochemistry
• Mantle Geochemistry
• Ore-deposit Geochemistry
• Organic Geochemistry
• Environmental Geochemistry
• Computational Geochemistry
• Isotope Geochemistry
• NanoGeochemistry
All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Acta Geochimica publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of geochemistry.