A. V. Vorobev, A. N. Lapin, A. A. Soloviev, G. R. Vorobeva
{"title":"An Approach to Interpreting Space Weather Natural Indicators to Evaluate the Impact of Space Weather on High-Latitude Power Systems","authors":"A. V. Vorobev, A. N. Lapin, A. A. Soloviev, G. R. Vorobeva","doi":"10.1134/S106935132470054X","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—Dynamic exploration and development of the Arctic zone of the Russian Federation is inextricably linked to the need to minimize risks to the technosphere, associated, among other things, with space weather effects on power equipment systems operated within the coverage of the auroral oval. At the same time, the concomitant monitoring of space weather parameters and variations of the geomagnetic field in the Arctic is carried out only by means of a small group of satellites and several dozens of magnetic stations located mainly in the USA, Canada, northern and central Europe. It is clear that the current situation practically excludes the possibility of operational diagnostics of the level of geomagnetically induced currents (GIC) for the most part of the Arctic zone of the Russian Federation, where, in fact, the only available indicator of space weather conditions are polar auroras. The paper proposes an approach to interpreting aurora appearance to assess space weather impact on high-latitude infrastructure facilities. Based on the case study of the “Vykhodnoy” substation of the “Severnyi Tranzit” (Northern Transit) main electric transmission line it is shown that when the aurora is observed in the north, at the zenith (overhead), and in the south relative to the observation point, the most probable (30-min average) GIC is 0.08, 0.23, and 0.68 A, respectively. At the same time, the probability of half-hourly average GIC exceeding 2 A (with auroras observed in the north, overhead, and in the south relative to the impacted object) is ~6, ~10, and ~15%, respectively. Finally, the ways to improving the proposed technique and the applicability limits of the approach are discussed.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"60 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya, Physics of the Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S106935132470054X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract—Dynamic exploration and development of the Arctic zone of the Russian Federation is inextricably linked to the need to minimize risks to the technosphere, associated, among other things, with space weather effects on power equipment systems operated within the coverage of the auroral oval. At the same time, the concomitant monitoring of space weather parameters and variations of the geomagnetic field in the Arctic is carried out only by means of a small group of satellites and several dozens of magnetic stations located mainly in the USA, Canada, northern and central Europe. It is clear that the current situation practically excludes the possibility of operational diagnostics of the level of geomagnetically induced currents (GIC) for the most part of the Arctic zone of the Russian Federation, where, in fact, the only available indicator of space weather conditions are polar auroras. The paper proposes an approach to interpreting aurora appearance to assess space weather impact on high-latitude infrastructure facilities. Based on the case study of the “Vykhodnoy” substation of the “Severnyi Tranzit” (Northern Transit) main electric transmission line it is shown that when the aurora is observed in the north, at the zenith (overhead), and in the south relative to the observation point, the most probable (30-min average) GIC is 0.08, 0.23, and 0.68 A, respectively. At the same time, the probability of half-hourly average GIC exceeding 2 A (with auroras observed in the north, overhead, and in the south relative to the impacted object) is ~6, ~10, and ~15%, respectively. Finally, the ways to improving the proposed technique and the applicability limits of the approach are discussed.
期刊介绍:
Izvestiya, Physics of the Solid Earth is an international peer reviewed journal that publishes results of original theoretical and experimental research in relevant areas of the physics of the Earth''s interior and applied geophysics. The journal welcomes manuscripts from all countries in the English or Russian language.