Ultra-Durable Solar-Driven Seawater Electrolysis for Sustainable Hydrogen Production

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-10-12 DOI:10.1002/adfm.202416014
Zhaolong Wang, Ciwei Wu, Xiaolong Wang, Mingzhu Xie, Yinfeng Li, Ziheng Zhan, Yong Shuai
{"title":"Ultra-Durable Solar-Driven Seawater Electrolysis for Sustainable Hydrogen Production","authors":"Zhaolong Wang, Ciwei Wu, Xiaolong Wang, Mingzhu Xie, Yinfeng Li, Ziheng Zhan, Yong Shuai","doi":"10.1002/adfm.202416014","DOIUrl":null,"url":null,"abstract":"Ions in seawater hinder direct sewage electrolysis due to the extreme corrosion of Cl<sup>−</sup> to the anode and reaction of Mg<sup>2+</sup> and Ca<sup>2+</sup> on the cathode producing solid substances, which reduce the electrolytic efficiency. However, traditional desalination consuming fossil fuel with massive CO<sub>2</sub> emissions threatens human survival. Therefore, zero-carbon emission, ultra-durable, large-scale production of freshwater from seawater for water electrolysis is urgently needed. Herein, a multifunctional system for seawater is demonstrated electrolysis based on ultra-durable solar desalination outdoors. The solar evaporators reach an evaporation flux of 1.88 kg m<sup>−2</sup> h<sup>−1</sup> with a photothermal conversion efficiency of solar energy as high as 91.3% with excellent ultra-durable salt resistance even for saturated saltwater due to the Marangoni effects. Moreover, the condensation of pure water from solar desalination based on the evaporation system reaches 0.54 L m<sup>−2</sup> h<sup>−1</sup> outdoors, which is suitable for a 20 cm × 20 cm engineered electrode equipped with a Janus membrane powered by a solar panel to produce H<sub>2</sub> outdoors. The ultrafast unidirectional transport of H<sub>2</sub> bubbles enabled by Janus membranes can greatly improve the H<sub>2</sub> production efficiency at a rate approaching 85 mL h<sup>−1</sup> for continuous 24 h outdoors.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202416014","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ions in seawater hinder direct sewage electrolysis due to the extreme corrosion of Cl to the anode and reaction of Mg2+ and Ca2+ on the cathode producing solid substances, which reduce the electrolytic efficiency. However, traditional desalination consuming fossil fuel with massive CO2 emissions threatens human survival. Therefore, zero-carbon emission, ultra-durable, large-scale production of freshwater from seawater for water electrolysis is urgently needed. Herein, a multifunctional system for seawater is demonstrated electrolysis based on ultra-durable solar desalination outdoors. The solar evaporators reach an evaporation flux of 1.88 kg m−2 h−1 with a photothermal conversion efficiency of solar energy as high as 91.3% with excellent ultra-durable salt resistance even for saturated saltwater due to the Marangoni effects. Moreover, the condensation of pure water from solar desalination based on the evaporation system reaches 0.54 L m−2 h−1 outdoors, which is suitable for a 20 cm × 20 cm engineered electrode equipped with a Janus membrane powered by a solar panel to produce H2 outdoors. The ultrafast unidirectional transport of H2 bubbles enabled by Janus membranes can greatly improve the H2 production efficiency at a rate approaching 85 mL h−1 for continuous 24 h outdoors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超耐久太阳能驱动海水电解实现可持续制氢
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Engineered Bio‐Heterojunction with Robust ROS‐Scavenging and Anti‐Inflammation for Targeted Acute Pancreatitis Therapy Triboelectric Programmed Droplet Manipulation for Plug-and-Play Assembly Characteristics, Encapsulation Strategies, and Applications of Al and Its Alloy Phase Change Materials for Thermal Energy Storage: A Comprehensive Review Ultra-Durable Solar-Driven Seawater Electrolysis for Sustainable Hydrogen Production Charge-Sign-Independent Separation of Mono- and Divalent Ions With Nanofiltration Membranes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1