Thomas Rück , Jonas Pangerl , Lukas Escher , Simon Jobst , Max Müller , Rudolf Bierl , Frank-Michael Matysik
{"title":"Kinetic cooling in mid-infrared methane photoacoustic spectroscopy: A quantitative analysis via digital twin verification","authors":"Thomas Rück , Jonas Pangerl , Lukas Escher , Simon Jobst , Max Müller , Rudolf Bierl , Frank-Michael Matysik","doi":"10.1016/j.pacs.2024.100652","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a detailed quantitative analysis of kinetic cooling in methane photoacoustic spectroscopy, leveraging the capabilities of a digital twin model. Using a quantum cascade laser tuned to 1210.01 cm⁻¹, we investigated the effects of varying nitrogen-oxygen matrix compositions on the photoacoustic signals of 15 ppmV methane. Notably, the photoacoustic signal amplitude decreased with increasing oxygen concentration, even falling below the background signal at oxygen levels higher than approximately 6 %V. This phenomenon was attributed to kinetic cooling, where thermal energy is extracted from the surrounding gas molecules rather than added, as validated by complex vector analysis using a previously published digital twin model. The model accurately reproduced complex signal patterns through simulations, providing insights into the underlying molecular mechanisms by quantifying individual collision contributions. These findings underscore the importance of digital twins in understanding the fundamentals of photoacoustic signal generation at the molecular level.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"40 ","pages":"Article 100652"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000697","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a detailed quantitative analysis of kinetic cooling in methane photoacoustic spectroscopy, leveraging the capabilities of a digital twin model. Using a quantum cascade laser tuned to 1210.01 cm⁻¹, we investigated the effects of varying nitrogen-oxygen matrix compositions on the photoacoustic signals of 15 ppmV methane. Notably, the photoacoustic signal amplitude decreased with increasing oxygen concentration, even falling below the background signal at oxygen levels higher than approximately 6 %V. This phenomenon was attributed to kinetic cooling, where thermal energy is extracted from the surrounding gas molecules rather than added, as validated by complex vector analysis using a previously published digital twin model. The model accurately reproduced complex signal patterns through simulations, providing insights into the underlying molecular mechanisms by quantifying individual collision contributions. These findings underscore the importance of digital twins in understanding the fundamentals of photoacoustic signal generation at the molecular level.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.