Xiaoqian Sun , Yunhui Du , Weiyi Zhang , Mengjiao Jin , Ruiang Fan , Peng Zhang
{"title":"F-doping effects on microstructure and electrochemical performance of cathode material Li1.2Mn0.54Ni0.13Co0.13O2","authors":"Xiaoqian Sun , Yunhui Du , Weiyi Zhang , Mengjiao Jin , Ruiang Fan , Peng Zhang","doi":"10.1016/j.partic.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-rich manganese-based (Li-rich Mn-based) cathode materials possess high specific capacity, low self-discharge rate and steady working voltage, but cycle performance and rate performance need to be further improved. In this study, cathode materials Li<sub>1.2</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>O<sub>2-x</sub>F<sub>x</sub> (x = 0, 0.02, 0.05, 0.08) are synthesized by the co-precipitation method with the two-step calcination process. And the F-doping effects on the microstructure and the electrochemical performance are investigated in the cathode materials Li<sub>1.2</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>O<sub>2</sub>. The results indicate that among all the F-doped cathode materials, the crystal lattice parameters are increased, order degree and stability of the layered structure are improved. As for x = 0.05, cathode material Li<sub>1.2</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>O<sub>1.95</sub>F<sub>0.05</sub> (LMO-F<sub>0.05</sub>) shows the best cycle performance and rate performance with its capacity retention rate 87.7% after 100 cycles at 0.2 C and discharge capacity 117 mAh g<sup>−1</sup> at 5 C high power. It can be seen that F doping is a simple and crucial strategy to promote the Li ion diffusion and develop high performance layered cathode materials.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"95 ","pages":"Pages 82-91"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001834","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-rich manganese-based (Li-rich Mn-based) cathode materials possess high specific capacity, low self-discharge rate and steady working voltage, but cycle performance and rate performance need to be further improved. In this study, cathode materials Li1.2Mn0.54Ni0.13Co0.13O2-xFx (x = 0, 0.02, 0.05, 0.08) are synthesized by the co-precipitation method with the two-step calcination process. And the F-doping effects on the microstructure and the electrochemical performance are investigated in the cathode materials Li1.2Mn0.54Ni0.13Co0.13O2. The results indicate that among all the F-doped cathode materials, the crystal lattice parameters are increased, order degree and stability of the layered structure are improved. As for x = 0.05, cathode material Li1.2Mn0.54Ni0.13Co0.13O1.95F0.05 (LMO-F0.05) shows the best cycle performance and rate performance with its capacity retention rate 87.7% after 100 cycles at 0.2 C and discharge capacity 117 mAh g−1 at 5 C high power. It can be seen that F doping is a simple and crucial strategy to promote the Li ion diffusion and develop high performance layered cathode materials.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.