{"title":"Risk minimization using robust experimental or sampling designs and mixture of designs","authors":"Ejub Talovic, Yves Tillé","doi":"10.1016/j.jspi.2024.106241","DOIUrl":null,"url":null,"abstract":"<div><div>For both experimental and sampling designs, the efficiency or balance of designs has been extensively studied. There are many ways to incorporate auxiliary information into designs. However, when we use balanced designs to decrease the variance due to an auxiliary variable, the variance may increase due to an effect which we define as lack of robustness. This robustness can be written as the largest eigenvalue of the variance operator of a sampling or experimental design. If this eigenvalue is large, then it might induce a large variance in the Horvitz–Thompson estimator of the total. We calculate or estimate the largest eigenvalue of the most common designs. We determine lower, upper bounds and approximations of this eigenvalue for different designs. Then, we compare these results with simulations that show the trade-off between efficiency and robustness. Those results can be used to determine the proper choice of designs for experiments such as clinical trials or surveys. We also propose a new and simple method for mixing two sampling designs, which allows to use a tuning parameter between two sampling designs. This method is then compared to the Gram–Schmidt walk design, which also governs the trade-off between robustness and efficiency. A set of simulation studies shows that our method of mixture gives similar results to the Gram–Schmidt walk design while having an interpretable variance matrix.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"236 ","pages":"Article 106241"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000983","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
For both experimental and sampling designs, the efficiency or balance of designs has been extensively studied. There are many ways to incorporate auxiliary information into designs. However, when we use balanced designs to decrease the variance due to an auxiliary variable, the variance may increase due to an effect which we define as lack of robustness. This robustness can be written as the largest eigenvalue of the variance operator of a sampling or experimental design. If this eigenvalue is large, then it might induce a large variance in the Horvitz–Thompson estimator of the total. We calculate or estimate the largest eigenvalue of the most common designs. We determine lower, upper bounds and approximations of this eigenvalue for different designs. Then, we compare these results with simulations that show the trade-off between efficiency and robustness. Those results can be used to determine the proper choice of designs for experiments such as clinical trials or surveys. We also propose a new and simple method for mixing two sampling designs, which allows to use a tuning parameter between two sampling designs. This method is then compared to the Gram–Schmidt walk design, which also governs the trade-off between robustness and efficiency. A set of simulation studies shows that our method of mixture gives similar results to the Gram–Schmidt walk design while having an interpretable variance matrix.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.