Hui Ding , Mei Yao , Riquan Zhang , Zhenglong Zhang , Hanbing Zhu
{"title":"Estimation and testing for varying-coefficient single-index quantile regression models","authors":"Hui Ding , Mei Yao , Riquan Zhang , Zhenglong Zhang , Hanbing Zhu","doi":"10.1016/j.jspi.2025.106289","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we propose varying-coefficient single-index quantile regression models, which includes most existing quantile regression models. We adopt B-spline basis approximation for the estimation of nonparametric components and use the “delete-one-component” method to construct check loss function. Under some mild conditions, we establish asymptotic theory of the proposed estimators for both the parametric and nonparametric components. Moreover, we propose a rank score based test to examine whether the varying-coefficient functions are constant. The finite sample performance of the proposed estimation method is illustrated by simulation studies and an empirical analysis of two real datasets.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"239 ","pages":"Article 106289"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375825000278","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we propose varying-coefficient single-index quantile regression models, which includes most existing quantile regression models. We adopt B-spline basis approximation for the estimation of nonparametric components and use the “delete-one-component” method to construct check loss function. Under some mild conditions, we establish asymptotic theory of the proposed estimators for both the parametric and nonparametric components. Moreover, we propose a rank score based test to examine whether the varying-coefficient functions are constant. The finite sample performance of the proposed estimation method is illustrated by simulation studies and an empirical analysis of two real datasets.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.