{"title":"Real-time identification of precursors in commercial aviation using multiple-instance learning","authors":"Zhiwei Xiang , Zhenxing Gao , Yansong Gao , Yangyang Zhang , Runhao Zhang","doi":"10.1016/j.aei.2024.102856","DOIUrl":null,"url":null,"abstract":"<div><div>This research pioneers the application of precursor concepts to preemptively identify and prevent aviation safety incidents using Machine Learning (ML). Airlines and governing organizations, such as the Federal Aviation Administration (FAA) in the United States, have been trying to prevent safety incidents during routine operations. However, this task is challenging due to the lack of timestep-wise event annotation in flights and the complexity involved in the timely identification of incidents prior to their occurrence. To address these issues, we propose a real-time precursor identification methodology combining Multiple-Instance Learning (MIL) and feature-based Knowledge Distillation (KD) learning. Our two-stage approach, involving deep MIL for labeling and a KD-based model for real-time warnings, demonstrates state-of-the-art performance and a time delay of 2.99ms using a dataset of 23,549 real flights. Further experiments using t-distributed Stochastic Neighbor Embedding (t-SNE) and occlusion method confirm our model’s transparency, enabling the generation of reliable quantitative precursor scores and facilitating reasoning about the causes of safety incidents at the parameter level. Additionally, statistical analysis of precursors reveals varying evolution times for different safety events, which indicates that pilots have at least 8 s to react after receiving a warning. In conclusion, our research provides a theoretical foundation and technical support for the next generation of online risk warning systems, enhancing flight safety and offering a pathway towards more intelligent and secure flight operations.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102856"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624005044","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This research pioneers the application of precursor concepts to preemptively identify and prevent aviation safety incidents using Machine Learning (ML). Airlines and governing organizations, such as the Federal Aviation Administration (FAA) in the United States, have been trying to prevent safety incidents during routine operations. However, this task is challenging due to the lack of timestep-wise event annotation in flights and the complexity involved in the timely identification of incidents prior to their occurrence. To address these issues, we propose a real-time precursor identification methodology combining Multiple-Instance Learning (MIL) and feature-based Knowledge Distillation (KD) learning. Our two-stage approach, involving deep MIL for labeling and a KD-based model for real-time warnings, demonstrates state-of-the-art performance and a time delay of 2.99ms using a dataset of 23,549 real flights. Further experiments using t-distributed Stochastic Neighbor Embedding (t-SNE) and occlusion method confirm our model’s transparency, enabling the generation of reliable quantitative precursor scores and facilitating reasoning about the causes of safety incidents at the parameter level. Additionally, statistical analysis of precursors reveals varying evolution times for different safety events, which indicates that pilots have at least 8 s to react after receiving a warning. In conclusion, our research provides a theoretical foundation and technical support for the next generation of online risk warning systems, enhancing flight safety and offering a pathway towards more intelligent and secure flight operations.
期刊介绍:
Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.