{"title":"Evidence at the landscape level links high predator/pest ratios to biocontrol services against aphids","authors":"Bing Liu , Yanhui Lu","doi":"10.1016/j.agee.2024.109319","DOIUrl":null,"url":null,"abstract":"<div><div>Compared with external environment interferences, the interaction between arthropod natural enemies and pests is the key inherent driver determining the strength of biocontrol services. However, the extent to which this effect can suppress pests is still inconclusive. We combined two complementary experiments to determine how variation in an assemblage of generalist arthropod predators modified the level of biocontrol services for suppression of a key aphid pest in cotton fields. Using generalized linear mixed effect models (GLMM) and path analysis, we clarified the causal relationship between predator/aphid ratios (PAR) and (1) the resulting biocontrol services index (BSI) and (2) the aphid population growth index (APGI) as seen in field predator exclusion trials. We also measured the effect of PAR on APGI in more commercial cotton fields. Our results, at landscape level, indicate that when PAR values increased one unit, BSI values improved 34.1 %, and reduced aphid population growth 28.3 % (the standardized effect coefficient in path analysis) during two weeks in field cage-exclusion trials. The effect of high predator/aphid ratios on reducing the aphid population growth rates was also significant in more commercial cotton fields, which were sampled over a longer time interval (4 weeks). Our study confirmed that there was a causal relationship between the natural enemy/pest ratio and the level of biological pest control services for predators and aphid population growth in crop fields. PAR values (predator/aphid ratios) can, therefore, be used to predict the level of biocontrol services in this context instead of relying on more labor-intensive cage exclusion studies.</div></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109319"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture, Ecosystems & Environment","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167880924004377","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Compared with external environment interferences, the interaction between arthropod natural enemies and pests is the key inherent driver determining the strength of biocontrol services. However, the extent to which this effect can suppress pests is still inconclusive. We combined two complementary experiments to determine how variation in an assemblage of generalist arthropod predators modified the level of biocontrol services for suppression of a key aphid pest in cotton fields. Using generalized linear mixed effect models (GLMM) and path analysis, we clarified the causal relationship between predator/aphid ratios (PAR) and (1) the resulting biocontrol services index (BSI) and (2) the aphid population growth index (APGI) as seen in field predator exclusion trials. We also measured the effect of PAR on APGI in more commercial cotton fields. Our results, at landscape level, indicate that when PAR values increased one unit, BSI values improved 34.1 %, and reduced aphid population growth 28.3 % (the standardized effect coefficient in path analysis) during two weeks in field cage-exclusion trials. The effect of high predator/aphid ratios on reducing the aphid population growth rates was also significant in more commercial cotton fields, which were sampled over a longer time interval (4 weeks). Our study confirmed that there was a causal relationship between the natural enemy/pest ratio and the level of biological pest control services for predators and aphid population growth in crop fields. PAR values (predator/aphid ratios) can, therefore, be used to predict the level of biocontrol services in this context instead of relying on more labor-intensive cage exclusion studies.
期刊介绍:
Agriculture, Ecosystems and Environment publishes scientific articles dealing with the interface between agroecosystems and the natural environment, specifically how agriculture influences the environment and how changes in that environment impact agroecosystems. Preference is given to papers from experimental and observational research at the field, system or landscape level, from studies that enhance our understanding of processes using data-based biophysical modelling, and papers that bridge scientific disciplines and integrate knowledge. All papers should be placed in an international or wide comparative context.