{"title":"Severe plastic deformation of Mn-Al permanent magnets","authors":"Thomas Keller , Gheorghe Gurau , Ian Baker","doi":"10.1016/j.mtla.2024.102251","DOIUrl":null,"url":null,"abstract":"<div><div>Manganese-aluminum permanent magnets are promising candidates to fill the cost and performance gap between lower-performance bonded ferrites and high-performance magnets based on rare-earth elements. This is due to the favorable combination of saturation magnetization and magnetocrystalline anisotropy in the Mn-Al τ phase combined with low raw material cost. However, the τ phase is metastable and prone to decomposition at high temperatures, making processing by conventional milling and sintering difficult. Severe plastic deformation (SPD) is an alternative processing route to control the microstructure of a material by applying very high amounts of strain. In this study, equal-channel angular extrusion (ECAE) and high-speed high-pressure torsion (HS-HPT) were both tested as SPD processing routes. ECAE improved magnetic energy product, (BH)<sub>max</sub>, by 220 % by refining the grain size and imparting a high density of dislocations. HS-HPT enabled a rapid phase transformation from the high-temperature ε phase to the τ phase but lowered H<sub>ci</sub>, making it better suited to soft magnet processing.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Manganese-aluminum permanent magnets are promising candidates to fill the cost and performance gap between lower-performance bonded ferrites and high-performance magnets based on rare-earth elements. This is due to the favorable combination of saturation magnetization and magnetocrystalline anisotropy in the Mn-Al τ phase combined with low raw material cost. However, the τ phase is metastable and prone to decomposition at high temperatures, making processing by conventional milling and sintering difficult. Severe plastic deformation (SPD) is an alternative processing route to control the microstructure of a material by applying very high amounts of strain. In this study, equal-channel angular extrusion (ECAE) and high-speed high-pressure torsion (HS-HPT) were both tested as SPD processing routes. ECAE improved magnetic energy product, (BH)max, by 220 % by refining the grain size and imparting a high density of dislocations. HS-HPT enabled a rapid phase transformation from the high-temperature ε phase to the τ phase but lowered Hci, making it better suited to soft magnet processing.