Amy Bredes , Georgette Tso , Rachel K. Gittman , Siddharth Narayan , Tori Tomiczek , Jon K. Miller , Rebecca L. Morris
{"title":"A 20-year systematic review of wave dissipation by soft and hybrid nature-based solutions (NbS)","authors":"Amy Bredes , Georgette Tso , Rachel K. Gittman , Siddharth Narayan , Tori Tomiczek , Jon K. Miller , Rebecca L. Morris","doi":"10.1016/j.ecoleng.2024.107418","DOIUrl":null,"url":null,"abstract":"<div><div>A systematic review of 20 years of studies was conducted to understand wave dissipation trends of hybrid and natural (soft) coastal features, collectively referred to as nature-based solutions (NbS). Of 13,451 studies identified and 470 studies reviewed; only 50 studies consistently reported the basic parameters required to compare wave height dissipation. These studies were used to create a basic understanding of wave dissipation across soft and hybrid features along different cross-shore widths. More specific implementation guidance for NbS is limited due to the lack of consistent monitoring practices and protocol within and between soft and hybrid features. This disparity is greatest between soft and hybrid NbS. To fully understand best practices for the wide variety of soft and hybrid NbS, more uniform monitoring data is needed to assess and more fully define wave dissipation performance. Based on the findings of this review, eight parameters to measure the wave dissipation effectiveness of NbS features are proposed. These findings will inform the development and application of evaluation protocols for future NbS projects.</div></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"209 ","pages":"Article 107418"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092585742400243X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A systematic review of 20 years of studies was conducted to understand wave dissipation trends of hybrid and natural (soft) coastal features, collectively referred to as nature-based solutions (NbS). Of 13,451 studies identified and 470 studies reviewed; only 50 studies consistently reported the basic parameters required to compare wave height dissipation. These studies were used to create a basic understanding of wave dissipation across soft and hybrid features along different cross-shore widths. More specific implementation guidance for NbS is limited due to the lack of consistent monitoring practices and protocol within and between soft and hybrid features. This disparity is greatest between soft and hybrid NbS. To fully understand best practices for the wide variety of soft and hybrid NbS, more uniform monitoring data is needed to assess and more fully define wave dissipation performance. Based on the findings of this review, eight parameters to measure the wave dissipation effectiveness of NbS features are proposed. These findings will inform the development and application of evaluation protocols for future NbS projects.
期刊介绍:
Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers.
Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.