Post impact flexural behavior investigation of hybrid foam-core sandwich composites at extreme Arctic temperature

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composites Science and Technology Pub Date : 2024-10-05 DOI:10.1016/j.compscitech.2024.110897
Faizan Mirza, Jason P. Mack, Arnob Banik, M.H. Khan, K.T. Tan
{"title":"Post impact flexural behavior investigation of hybrid foam-core sandwich composites at extreme Arctic temperature","authors":"Faizan Mirza,&nbsp;Jason P. Mack,&nbsp;Arnob Banik,&nbsp;M.H. Khan,&nbsp;K.T. Tan","doi":"10.1016/j.compscitech.2024.110897","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the post-impact bending behavior and failure mechanisms in hybrid sandwich composites made of Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP). Flexural tests conducted at both ambient room temperature and low temperature Arctic conditions reveal a significant enhancement in flexural performance when GFRP layer is incorporated on the outer side of the hybrid composite. The investigation utilizes images from testing to elucidate damage modes, including fiber and matrix cracking in the composite facesheet, as well as core shearing and debonding in the Polyvinyl Chloride (PVC) foam core. Residual flexural properties are notably influenced by stacking sequence, facesheet compressive properties, pre-existing impact damage and temperature conditions. Analytical predictions, validated experimentally, highlight the effect of stacking sequence, low temperature, and impact energy on flexural collapse modes, with competing failure modes such as indentation and core shear. Collapse maps indicate that room temperature specimens predominantly collapse through indentation, while diverse collapse mechanisms emerge due to facesheet thickness, rigidity, and degraded tensile strength. The study aims to provide fundamental insights for future composite designs tailored for Arctic applications.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110897"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004676","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the post-impact bending behavior and failure mechanisms in hybrid sandwich composites made of Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP). Flexural tests conducted at both ambient room temperature and low temperature Arctic conditions reveal a significant enhancement in flexural performance when GFRP layer is incorporated on the outer side of the hybrid composite. The investigation utilizes images from testing to elucidate damage modes, including fiber and matrix cracking in the composite facesheet, as well as core shearing and debonding in the Polyvinyl Chloride (PVC) foam core. Residual flexural properties are notably influenced by stacking sequence, facesheet compressive properties, pre-existing impact damage and temperature conditions. Analytical predictions, validated experimentally, highlight the effect of stacking sequence, low temperature, and impact energy on flexural collapse modes, with competing failure modes such as indentation and core shear. Collapse maps indicate that room temperature specimens predominantly collapse through indentation, while diverse collapse mechanisms emerge due to facesheet thickness, rigidity, and degraded tensile strength. The study aims to provide fundamental insights for future composite designs tailored for Arctic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极端北极温度下混合泡沫芯材夹层复合材料的冲击后挠曲行为研究
本研究探讨了碳纤维增强聚合物(CFRP)和玻璃纤维增强聚合物(GFRP)混合夹层复合材料的冲击后弯曲行为和破坏机制。在室温和北极低温条件下进行的挠曲测试表明,在混合复合材料外侧加入玻璃纤维增强聚合物层后,挠曲性能显著提高。研究利用测试图像来阐明损坏模式,包括复合材料面层的纤维和基质开裂,以及聚氯乙烯(PVC)泡沫芯材的芯材剪切和脱粘。残余挠曲性能明显受到堆叠顺序、面片抗压性能、预先存在的冲击损伤和温度条件的影响。经实验验证的分析预测结果强调了堆叠顺序、低温和冲击能量对挠曲塌陷模式的影响,以及与之竞争的破坏模式,如压痕和芯材剪切。塌陷图显示,室温下的试样主要通过压痕塌陷,而由于面片厚度、刚度和抗拉强度下降,出现了多种塌陷机制。该研究旨在为未来针对北极应用的复合材料设计提供基本见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
期刊最新文献
Egg white-derived nanocomposite microspheres for alveolar bone defects management Dual covalent bond induced high thermally conductive polyimide composite films based on CNT@CN complex filler Anti-interference flexible temperature-sensitive/strain-sensing aerogel fiber for cooperative monitoring of human body temperature and movement information Symmetric sandwich–like rubber composites for “green” electromagnetic interference shielding and thermal insulation Concurrent optimization of continuous carbon fiber-reinforced composites with multi-scale components considering the manufacturing constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1