Jianxia Qi , Wanting Zhou , Chengyuan Yang , Wen Liu , Chang Guan , Chengyun Zhang , Qingyan Han , Wei Gao , Lipeng Zhu , Jun Dong
{"title":"Fabrication of sandwich nanostructured substrates with Au@Ag NCs/Graphene/AgMP for ultrasensitive SERS detection","authors":"Jianxia Qi , Wanting Zhou , Chengyuan Yang , Wen Liu , Chang Guan , Chengyun Zhang , Qingyan Han , Wei Gao , Lipeng Zhu , Jun Dong","doi":"10.1016/j.materresbull.2024.113107","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the design of a bottom-up \"sandwich\" configuration substrate via electrostatic self-assembly. A silver microplate (AgMP) serves as the stable structural base, onto which monolayer graphene is wet-transferred. Au@Ag nanocubes (Au@Ag NCs) are then assembled on the upper layer through liquid-liquid three-phase self-assembly, forming a Au@AgNCs/G/AgMP “sandwich” substrate. The combination of electromagnetic enhancement from noble metal nanoparticles and chemical enhancement from graphene synergistically amplifies the signal of detected molecules, leading to significant Surface-Enhanced Raman Scattering (SERS) enhancement. Experimental results demonstrate that this substrate can detect Rhodamine 6 G (R6G) at concentrations as low as 10<sup>–12</sup> M and Crystal Violet (CV) at 10<sup>–9</sup> M. Moreover, the substrate can detect Aspartame (APM) at concentrations as low as 0.0625 g/L, well below the typical daily intake levels for humans. These findings indicate that the substrate exhibits excellent SERS performance and holds significant potential for broad applications.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"181 ","pages":"Article 113107"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004380","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the design of a bottom-up "sandwich" configuration substrate via electrostatic self-assembly. A silver microplate (AgMP) serves as the stable structural base, onto which monolayer graphene is wet-transferred. Au@Ag nanocubes (Au@Ag NCs) are then assembled on the upper layer through liquid-liquid three-phase self-assembly, forming a Au@AgNCs/G/AgMP “sandwich” substrate. The combination of electromagnetic enhancement from noble metal nanoparticles and chemical enhancement from graphene synergistically amplifies the signal of detected molecules, leading to significant Surface-Enhanced Raman Scattering (SERS) enhancement. Experimental results demonstrate that this substrate can detect Rhodamine 6 G (R6G) at concentrations as low as 10–12 M and Crystal Violet (CV) at 10–9 M. Moreover, the substrate can detect Aspartame (APM) at concentrations as low as 0.0625 g/L, well below the typical daily intake levels for humans. These findings indicate that the substrate exhibits excellent SERS performance and holds significant potential for broad applications.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.