{"title":"Explainable reasoning over temporal knowledge graphs by pre-trained language model","authors":"Qing Li, Guanzhong Wu","doi":"10.1016/j.ipm.2024.103903","DOIUrl":null,"url":null,"abstract":"<div><div>Temporal knowledge graph reasoning (TKGR) has been considered as a crucial task for modeling the evolving knowledge, aiming to infer the unknown connections between entities at specific times. Traditional TKGR methods try to aggregate structural information between entities and evolve representations of entities over distinct snapshots, while some other methods attempt to extract temporal logic rules from historical interactions. However, these methods fail to address the continuously emerging unseen entities over time and ignore the historical dependencies between entities and relations. To overcome these limitations, we propose a novel method, termed TPNet, which introduces historical information completion strategy (HICS) and pre-trained language model (PLM) to conduct explainable inductive reasoning over TKGs. Specifically, TPNet extracts reliable temporal logical paths from historical subgraphs using a temporal-correlated search strategy. For unseen entities, we utilize HICS to sample or generate paths to supplement their historical information. Besides, a PLM and a time-aware encoder are introduced to jointly encode the temporal paths, thereby comprehensively capturing dependencies between entities and relations. Moreover, the semantic similarity between the query quadruples and the extracted paths is evaluated to simultaneously optimize the representations of entities and relations. Extensive experiments on entity and relation prediction tasks are conducted to evaluate the performance of TPNet. The experimental results on four benchmark datasets demonstrate the superiority of TPNet over state-of-the-art TKGR methods, achieving improvements of 14.35%, 23.08%, 6.75% and 5.38% on MRR, respectively.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 1","pages":"Article 103903"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324002620","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Temporal knowledge graph reasoning (TKGR) has been considered as a crucial task for modeling the evolving knowledge, aiming to infer the unknown connections between entities at specific times. Traditional TKGR methods try to aggregate structural information between entities and evolve representations of entities over distinct snapshots, while some other methods attempt to extract temporal logic rules from historical interactions. However, these methods fail to address the continuously emerging unseen entities over time and ignore the historical dependencies between entities and relations. To overcome these limitations, we propose a novel method, termed TPNet, which introduces historical information completion strategy (HICS) and pre-trained language model (PLM) to conduct explainable inductive reasoning over TKGs. Specifically, TPNet extracts reliable temporal logical paths from historical subgraphs using a temporal-correlated search strategy. For unseen entities, we utilize HICS to sample or generate paths to supplement their historical information. Besides, a PLM and a time-aware encoder are introduced to jointly encode the temporal paths, thereby comprehensively capturing dependencies between entities and relations. Moreover, the semantic similarity between the query quadruples and the extracted paths is evaluated to simultaneously optimize the representations of entities and relations. Extensive experiments on entity and relation prediction tasks are conducted to evaluate the performance of TPNet. The experimental results on four benchmark datasets demonstrate the superiority of TPNet over state-of-the-art TKGR methods, achieving improvements of 14.35%, 23.08%, 6.75% and 5.38% on MRR, respectively.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.