Optimization of modeling and temperature control of air-cooled PEMFC based on TLBO-DE

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Energy and AI Pub Date : 2024-09-27 DOI:10.1016/j.egyai.2024.100430
Pu He , Jun-Hong Chen , Chen-Zi Zhang , Zi-Yan Yu , Ming-Yang Wang , Jun-Yu Chen , Jia-Le Song , Yu-Tong Mu , Kun-Ying Gong , Wen-Quan Tao
{"title":"Optimization of modeling and temperature control of air-cooled PEMFC based on TLBO-DE","authors":"Pu He ,&nbsp;Jun-Hong Chen ,&nbsp;Chen-Zi Zhang ,&nbsp;Zi-Yan Yu ,&nbsp;Ming-Yang Wang ,&nbsp;Jun-Yu Chen ,&nbsp;Jia-Le Song ,&nbsp;Yu-Tong Mu ,&nbsp;Kun-Ying Gong ,&nbsp;Wen-Quan Tao","doi":"10.1016/j.egyai.2024.100430","DOIUrl":null,"url":null,"abstract":"<div><div>The temperature control of the air-cooled proton exchange membrane fuel cell (PEMFC) is important for effective and safe operation. To develop a practical and precise controller, this study combines the Radial Basis Function (RBF) neural network with Back Propagation neural network adaptive Proportion Integration Differentiation (BP-PID), and then a metaheuristic algorithm is used to optimize the parameters of RBF-BP-PID for further improvement in temperature control. First, an air-cooled PEMFC system model is established. To match the simulation data with the experimental data, Teaching Learning Based Optimization–Differential Evolution (TLBO-DE) is proposed to identify the unknown parameters, and the maximum relative error is &lt;3.5 %. Second, RBF neural network is introduced to identify the stack temperature and provide the accurate <span><math><mfrac><mrow><mi>∂</mi><mi>y</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mrow><mi>∂</mi><mi>u</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span> for BP-PID, which solves the problem of using sign function sgn(<span><math><mfrac><mrow><mi>∂</mi><mi>y</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mrow><mi>∂</mi><mi>u</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span>) to approximate the <span><math><mfrac><mrow><mi>∂</mi><mi>y</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mrow><mi>∂</mi><mi>u</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span> in BP-PID. Regarding the temperature control of air-cooled PEMFC, several controllers are compared, including PID, Fuzzy-PID, BP-PID and RBF-BP-PID. The proposed RBF-BP-PID achieves the best control effect, which reduces the integrated time and absolute error (ITAE) by 3.4 % and 15.8 % based on BP-PID in the startup and steady phases, respectively. Since the <span><math><mfrac><mrow><mi>∂</mi><mi>y</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mrow><mi>∂</mi><mi>u</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mfrac></math></span> provided by RBF changes softly and continuously during the control process, the parameters self-tuning ability of RBF-BP-PID is better than BP-PID. Third, to improve the control effect of RBF-BP-PID further, TLBO-DE is adopted to optimize the parameters of RBF neural network and BP neural network.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"18 ","pages":"Article 100430"},"PeriodicalIF":9.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266654682400096X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The temperature control of the air-cooled proton exchange membrane fuel cell (PEMFC) is important for effective and safe operation. To develop a practical and precise controller, this study combines the Radial Basis Function (RBF) neural network with Back Propagation neural network adaptive Proportion Integration Differentiation (BP-PID), and then a metaheuristic algorithm is used to optimize the parameters of RBF-BP-PID for further improvement in temperature control. First, an air-cooled PEMFC system model is established. To match the simulation data with the experimental data, Teaching Learning Based Optimization–Differential Evolution (TLBO-DE) is proposed to identify the unknown parameters, and the maximum relative error is <3.5 %. Second, RBF neural network is introduced to identify the stack temperature and provide the accurate y(k)u(k) for BP-PID, which solves the problem of using sign function sgn(y(k)u(k)) to approximate the y(k)u(k) in BP-PID. Regarding the temperature control of air-cooled PEMFC, several controllers are compared, including PID, Fuzzy-PID, BP-PID and RBF-BP-PID. The proposed RBF-BP-PID achieves the best control effect, which reduces the integrated time and absolute error (ITAE) by 3.4 % and 15.8 % based on BP-PID in the startup and steady phases, respectively. Since the y(k)u(k) provided by RBF changes softly and continuously during the control process, the parameters self-tuning ability of RBF-BP-PID is better than BP-PID. Third, to improve the control effect of RBF-BP-PID further, TLBO-DE is adopted to optimize the parameters of RBF neural network and BP neural network.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 TLBO-DE 的风冷 PEMFC 建模和温度控制优化
空气冷却质子交换膜燃料电池(PEMFC)的温度控制对于有效和安全运行非常重要。为了开发实用且精确的控制器,本研究将径向基函数(RBF)神经网络与反向传播神经网络自适应比例积分微分(BP-PID)相结合,然后使用元启发式算法优化 RBF-BP-PID 的参数,以进一步改善温度控制。首先,建立了风冷 PEMFC 系统模型。为使仿真数据与实验数据相匹配,提出了基于教学的优化-差分进化算法(TLBO-DE)来识别未知参数,其最大相对误差为 <3.5%。其次,引入 RBF 神经网络识别烟囱温度,为 BP-PID 提供精确的∂y(k)∂u(k),解决了 BP-PID 中使用符号函数 sgn(∂y(k)∂u(k)) 近似∂y(k)∂u(k)的问题。关于风冷 PEMFC 的温度控制,比较了几种控制器,包括 PID、Fuzzy-PID、BP-PID 和 RBF-BP-PID。所提出的 RBF-BP-PID 控制效果最好,在启动和稳定阶段,它比 BP-PID 分别减少了 3.4 % 和 15.8 % 的综合时间和绝对误差(ITAE)。由于 RBF 提供的∂y(k)∂u(k)在控制过程中变化柔和且连续,因此 RBF-BP-PID 的参数自整定能力优于 BP-PID。第三,为进一步提高 RBF-BP-PID 的控制效果,采用 TLBO-DE 对 RBF 神经网络和 BP 神经网络的参数进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
期刊最新文献
Predicting the thermal conductivity of polymer composites with one-dimensional oriented fillers using the combination of deep learning and ensemble learning A hybrid wind power prediction model based on seasonal feature decomposition and enhanced feature extraction Integrating local knowledge with ChatGPT-like large-scale language models for enhanced societal comprehension of carbon neutrality Optimization of a Bayesian game for Peer-to-Peer trading among prosumers under incomplete information via a CNN-LSTM-ATT Parameter sensitivity analysis for diesel spray penetration prediction based on GA-BP neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1