{"title":"Deep-learning-based point cloud completion methods: A review","authors":"Kun Zhang , Ao Zhang , Xiaohong Wang , Weisong Li","doi":"10.1016/j.gmod.2024.101233","DOIUrl":null,"url":null,"abstract":"<div><div>Point cloud completion aims to utilize algorithms to repair missing parts in 3D data for high-quality point clouds. This technology is crucial for applications such as autonomous driving and urban planning. With deep learning’s progress, the robustness and accuracy of point cloud completion have improved significantly. However, the quality of completed point clouds requires further enhancement to satisfy practical requirements. In this study, we conducted an extensive survey of point cloud completion methods, with the following main objectives: (i) We classified point cloud completion methods into categories based on their principles, such as point-based, convolution-based, GAN-based, and geometry-based methods, and thoroughly investigated the advantages and limitations of each category. (ii) We collected publicly available datasets for point cloud completion algorithms and conducted experimental comparisons using various typical deep-learning networks to draw conclusions. (iii) With our research in this paper, we discuss future research trends in this rapidly evolving field.</div></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"136 ","pages":"Article 101233"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070324000213","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Point cloud completion aims to utilize algorithms to repair missing parts in 3D data for high-quality point clouds. This technology is crucial for applications such as autonomous driving and urban planning. With deep learning’s progress, the robustness and accuracy of point cloud completion have improved significantly. However, the quality of completed point clouds requires further enhancement to satisfy practical requirements. In this study, we conducted an extensive survey of point cloud completion methods, with the following main objectives: (i) We classified point cloud completion methods into categories based on their principles, such as point-based, convolution-based, GAN-based, and geometry-based methods, and thoroughly investigated the advantages and limitations of each category. (ii) We collected publicly available datasets for point cloud completion algorithms and conducted experimental comparisons using various typical deep-learning networks to draw conclusions. (iii) With our research in this paper, we discuss future research trends in this rapidly evolving field.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.