Hind Ahmed Siddiq , Amani Alhifthi , Reem Ghubayra , Metwally Madkour
{"title":"Layered bismuthene forming the interfacial pathway for rapid charge transfer in CuNb13O33/g-C3N5 photocatalyst for enhancing ciprofloxacin degradation","authors":"Hind Ahmed Siddiq , Amani Alhifthi , Reem Ghubayra , Metwally Madkour","doi":"10.1016/j.jphotochem.2024.116073","DOIUrl":null,"url":null,"abstract":"<div><div>The objective of the present research was to examine the usefulness of the photocatalytic degradation process in removing the ciprofloxacin drug from wastewater, which is difficult to remove from waterbodies. To tackle this difficulty, a ternary copper niobium oxide/carbon nitride/layered bismuthene heterostructure (CuNb<sub>13</sub>O<sub>33</sub>/g-C<sub>3</sub>N<sub>5</sub>-L-Bi) composite was developed by an intuitive solvothermal process. layered bismuthene (L-Bi) was prepared using a unique ball milling approach. According to the results of the characterization, adding L-Bi and g-C<sub>3</sub>N<sub>5</sub> with a low band gap to the original band structure of CuNb<sub>13</sub>O<sub>33</sub> makes it more efficient. After 120 min of irradiation, the modified CuNb<sub>13</sub>O<sub>33</sub>/g-C<sub>3</sub>N<sub>5</sub>-L-Bi sample significantly improved ciprofloxacin degradation, resulting in a degradation rate of 98 %. In addition, the impact of the catalyst that has been created on the removal of ciprofloxacin at various pH, catalyst dosages, and scavengers was also examined, demonstrating the catalyst’s suitability for purifying natural water environments. A detailed study of the steps used to break down ciprofloxacin has shown that many active species are involved, with a focus on the important roles played by reactive oxidative species (ROS). Thus, this study introduces a novel combination of layered bismuthene photocatalysts for environmentally friendly degradation of antibiotics.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"459 ","pages":"Article 116073"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024006178","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of the present research was to examine the usefulness of the photocatalytic degradation process in removing the ciprofloxacin drug from wastewater, which is difficult to remove from waterbodies. To tackle this difficulty, a ternary copper niobium oxide/carbon nitride/layered bismuthene heterostructure (CuNb13O33/g-C3N5-L-Bi) composite was developed by an intuitive solvothermal process. layered bismuthene (L-Bi) was prepared using a unique ball milling approach. According to the results of the characterization, adding L-Bi and g-C3N5 with a low band gap to the original band structure of CuNb13O33 makes it more efficient. After 120 min of irradiation, the modified CuNb13O33/g-C3N5-L-Bi sample significantly improved ciprofloxacin degradation, resulting in a degradation rate of 98 %. In addition, the impact of the catalyst that has been created on the removal of ciprofloxacin at various pH, catalyst dosages, and scavengers was also examined, demonstrating the catalyst’s suitability for purifying natural water environments. A detailed study of the steps used to break down ciprofloxacin has shown that many active species are involved, with a focus on the important roles played by reactive oxidative species (ROS). Thus, this study introduces a novel combination of layered bismuthene photocatalysts for environmentally friendly degradation of antibiotics.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.