Synthesis and field emission characterization of La-doped SiC nanowires using graphite powder as carbon source

IF 1.7 4区 材料科学 Q3 CRYSTALLOGRAPHY Journal of Crystal Growth Pub Date : 2024-09-26 DOI:10.1016/j.jcrysgro.2024.127901
Li Weidong , Zhang Meng
{"title":"Synthesis and field emission characterization of La-doped SiC nanowires using graphite powder as carbon source","authors":"Li Weidong ,&nbsp;Zhang Meng","doi":"10.1016/j.jcrysgro.2024.127901","DOIUrl":null,"url":null,"abstract":"<div><div>Lanthanum (La)-doped SiC nanowires (NMs) were synthesized via a carbon thermal reduction process using different graphite powders, while milled Si-SiO2 mixed powders were employed as the silicon source. The identification of the products as β-SiC were supported by Select-area electron diffraction (SAED) and X-ray diffraction (XRD) analysis. The field emission results demonstrated that the turn-on field reached a minimum value of approximately 2.3 V/μm when the graphite content ranged from 2.5 g–3 g. The product exhibited higher density at this stage, accompanied by an increase in nanowire diameter and a tendency toward straightness. The energy spectrum analysis revealed a significant increase in the lanthanum content within the nanowires, with the atomic percentage rising from 0.05 to 0.26–0.27. The synergistic effect of morphology and La improved the field emission performance of the product. The findings may offer valuable insights for enhancing the field emission performance of one-dimensional nanomaterials.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"648 ","pages":"Article 127901"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024824003361","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Lanthanum (La)-doped SiC nanowires (NMs) were synthesized via a carbon thermal reduction process using different graphite powders, while milled Si-SiO2 mixed powders were employed as the silicon source. The identification of the products as β-SiC were supported by Select-area electron diffraction (SAED) and X-ray diffraction (XRD) analysis. The field emission results demonstrated that the turn-on field reached a minimum value of approximately 2.3 V/μm when the graphite content ranged from 2.5 g–3 g. The product exhibited higher density at this stage, accompanied by an increase in nanowire diameter and a tendency toward straightness. The energy spectrum analysis revealed a significant increase in the lanthanum content within the nanowires, with the atomic percentage rising from 0.05 to 0.26–0.27. The synergistic effect of morphology and La improved the field emission performance of the product. The findings may offer valuable insights for enhancing the field emission performance of one-dimensional nanomaterials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以石墨粉为碳源合成掺 La 的碳化硅纳米线并确定其场发射特性
使用不同的石墨粉,通过碳热还原工艺合成了掺有镧 (La) 的碳化硅纳米线 (NMs),同时使用研磨的 Si-SiO2 混合粉末作为硅源。通过选区电子衍射(SAED)和 X 射线衍射(XRD)分析,确定了产品为 β-SiC 。场发射结果表明,当石墨含量在 2.5 g-3 g 之间时,开启场达到最小值,约为 2.3 V/μm。能谱分析表明,纳米线中的镧含量显著增加,原子百分比从 0.05 上升到 0.26-0.27。形态和镧的协同作用提高了产品的场发射性能。这些发现为提高一维纳米材料的场发射性能提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Crystal Growth
Journal of Crystal Growth 化学-晶体学
CiteScore
3.60
自引率
11.10%
发文量
373
审稿时长
65 days
期刊介绍: The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.
期刊最新文献
Role of synthesis temperature in the formation of ZnO nanoparticles via the Sol-Gel process Editorial Board Thermal atomic layer deposition of Ga2O3 films using trimethylgallium and H2O Doping behavior and occurrence state of Na impurity in α-calcium sulfate hemihydrate prepared in Na2SO4 solution Quantum chemical study of trimethylindium and trimethylgallium gas-phase reaction pathways in InGaN MOCVD growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1