Achieving optically selective coatings of silica fixated carbon nanotubes for solar energy applications

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-10-12 DOI:10.1016/j.solmat.2024.113202
Erik Zäll , Jonas Segervald , Hoda Mahmoodi , Dimitrios Perivoliotis , Ludvig Edman , Thomas Wågberg
{"title":"Achieving optically selective coatings of silica fixated carbon nanotubes for solar energy applications","authors":"Erik Zäll ,&nbsp;Jonas Segervald ,&nbsp;Hoda Mahmoodi ,&nbsp;Dimitrios Perivoliotis ,&nbsp;Ludvig Edman ,&nbsp;Thomas Wågberg","doi":"10.1016/j.solmat.2024.113202","DOIUrl":null,"url":null,"abstract":"<div><div>Solar collectors have the potential for significant climate change mitigation by substituting heat produced with fossil fuels. To achieve this, collectors with highly efficient solar absorbers are essential. Carbon nanotubes are highly absorbing, sustainable, cheap, and thermally stable, making them a promising material for solar absorbers. However, achieving a high solar absorptance and low thermal emittance (solar selectivity), while maintaining good thermal stability and scalability is challenging. Here, we present a selective coating based on multi-walled carbon nanotubes and silica (SiO<sub>2</sub>). A water-based dispersion enabled by carboxyl functionalization of the carbon nanotubes (CNT<sub>F</sub>) is spray coated on a stainless steel (SS) substrate and fixated with sol-gel dip coated silica. The SS/CNT<sub>F</sub>/SiO<sub>2</sub> surface exhibits an optical selectivity dependent on CNT<sub>F</sub> area load and with 0.83 g<sub>CNT</sub> m<sup>−2</sup> a solar absorptance and thermal emittance of 0.94 and 0.40, respectively, is achieved. The coating also demonstrates excellent thermal stability, with an estimated lifetime of &gt;25 years at working temperatures ≤222°C. All together, we show that by using scalable and cheap technology, concurrent with sustainable materials and a simple structural design, we can manufacture a coating that exhibits properties suitable for low-to-mid-temperature applications. Our study highlights the potential of carbon-based solar absorbers.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113202"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005142","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Solar collectors have the potential for significant climate change mitigation by substituting heat produced with fossil fuels. To achieve this, collectors with highly efficient solar absorbers are essential. Carbon nanotubes are highly absorbing, sustainable, cheap, and thermally stable, making them a promising material for solar absorbers. However, achieving a high solar absorptance and low thermal emittance (solar selectivity), while maintaining good thermal stability and scalability is challenging. Here, we present a selective coating based on multi-walled carbon nanotubes and silica (SiO2). A water-based dispersion enabled by carboxyl functionalization of the carbon nanotubes (CNTF) is spray coated on a stainless steel (SS) substrate and fixated with sol-gel dip coated silica. The SS/CNTF/SiO2 surface exhibits an optical selectivity dependent on CNTF area load and with 0.83 gCNT m−2 a solar absorptance and thermal emittance of 0.94 and 0.40, respectively, is achieved. The coating also demonstrates excellent thermal stability, with an estimated lifetime of >25 years at working temperatures ≤222°C. All together, we show that by using scalable and cheap technology, concurrent with sustainable materials and a simple structural design, we can manufacture a coating that exhibits properties suitable for low-to-mid-temperature applications. Our study highlights the potential of carbon-based solar absorbers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现用于太阳能应用的二氧化硅固定碳纳米管光学选择性涂层
太阳能集热器有可能替代化石燃料产生的热量,从而显著缓解气候变化。为实现这一目标,集热器必须配备高效的太阳能吸收器。碳纳米管具有高吸收率、可持续、廉价和热稳定性等特点,是一种很有前途的太阳能吸收材料。然而,在保持良好热稳定性和可扩展性的同时,实现高太阳能吸收率和低热辐射率(太阳能选择性)是一项挑战。在此,我们介绍一种基于多壁碳纳米管和二氧化硅(SiO2)的选择性涂层。通过对碳纳米管(CNTF)进行羧基官能化而得到的水基分散体被喷涂在不锈钢(SS)基底上,并用溶胶凝胶浸涂二氧化硅固定。SS/CNTF/SiO2 表面的光学选择性取决于 CNTF 的面积负载,在 0.83 gCNT m-2 的情况下,太阳能吸收率和热辐射率分别达到 0.94 和 0.40。该涂层还具有出色的热稳定性,在工作温度≤222°C的条件下,估计使用寿命可达 25 年。综上所述,我们表明,通过使用可扩展的廉价技术、可持续材料和简单的结构设计,我们可以制造出具有适合中低温应用特性的涂层。我们的研究凸显了碳基太阳能吸收器的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Oxide-nitride nanolayer stacks for enhanced passivation of p-type surfaces in silicon solar cells Accurately quantifying the recombination pathways unique in back contact solar cells Analyzing the effectiveness of various coatings to mitigate photovoltaic modules soiling in desert climate Solar energy harvester based on polarization insensitive and wide angle stable UWB absorber for UV, visible and IR frequency range Experimental evaluation of photovoltaic thermal (PVT) system using a modular heat collector with flat back shape fins, pipe, nanofluids and phase change material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1