Numerical study on flow field of high-speed train passing through a new type of station

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Journal of Wind Engineering and Industrial Aerodynamics Pub Date : 2024-10-04 DOI:10.1016/j.jweia.2024.105908
Minzhang Liu , Ni Gao , Zhiyu Song , Bin Yang , Xin Zhu , Jingwen Wu , Kaisen Liang
{"title":"Numerical study on flow field of high-speed train passing through a new type of station","authors":"Minzhang Liu ,&nbsp;Ni Gao ,&nbsp;Zhiyu Song ,&nbsp;Bin Yang ,&nbsp;Xin Zhu ,&nbsp;Jingwen Wu ,&nbsp;Kaisen Liang","doi":"10.1016/j.jweia.2024.105908","DOIUrl":null,"url":null,"abstract":"<div><div>With the growing demand for efficient travel, tunnels are being lengthened and train speeds are being increased. High-speed subway brings new challenges to the flow environment of tunnel. Additionally, the emergence of express trains passing through stations without stopping has an enormous impact on the tunnel's and the station's flow field. This study focuses on a new type of station (NS) with overtaking and avoidance lines, allowing slow trains to stop for passengers to get on and off, while express trains pass through without stopping. The study analyzes pressure variation and wind speed when express trains pass through the NS without stopping. Different train speeds are taken into account. Based on this, the enhancement of station ventilation by utilizing the piston winds generated by express trains passing through NS is investigated. The air exchange effect and energy savings of the NS are explored. The results indicate that enhancing station air exchanges by fully utilizing piston wind saves about 190.68 kWh/day in mechanical ventilation energy consumption. This study contributes to the improvement of subway station construction and the advancement of subway train development. It can offer data assistance and theoretical direction for high-speed train operations.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"254 ","pages":"Article 105908"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016761052400271X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing demand for efficient travel, tunnels are being lengthened and train speeds are being increased. High-speed subway brings new challenges to the flow environment of tunnel. Additionally, the emergence of express trains passing through stations without stopping has an enormous impact on the tunnel's and the station's flow field. This study focuses on a new type of station (NS) with overtaking and avoidance lines, allowing slow trains to stop for passengers to get on and off, while express trains pass through without stopping. The study analyzes pressure variation and wind speed when express trains pass through the NS without stopping. Different train speeds are taken into account. Based on this, the enhancement of station ventilation by utilizing the piston winds generated by express trains passing through NS is investigated. The air exchange effect and energy savings of the NS are explored. The results indicate that enhancing station air exchanges by fully utilizing piston wind saves about 190.68 kWh/day in mechanical ventilation energy consumption. This study contributes to the improvement of subway station construction and the advancement of subway train development. It can offer data assistance and theoretical direction for high-speed train operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高速列车通过新型车站时的流场数值研究
随着人们对高效旅行的需求不断增长,隧道在不断延长,列车的速度也在不断提高。高速地铁给隧道的流动环境带来了新的挑战。此外,不停车通过车站的快速列车的出现也对隧道和车站的流场产生了巨大影响。本研究的重点是一种新型车站(NS),该车站设有超车线和避让线,允许慢车停车供乘客上下车,而快车则不停车通过。研究分析了特快列车不停车通过 NS 时的压力变化和风速。研究考虑了不同的列车速度。在此基础上,研究了如何利用特快列车通过 NS 时产生的活塞风加强车站通风。探讨了 NS 的空气交换效果和节能效果。结果表明,充分利用活塞风加强车站空气交换,每天可节省机械通风能耗约 190.68 千瓦时。这项研究有助于改进地铁车站建设,推动地铁列车发展。它可以为高速列车运行提供数据帮助和理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.90
自引率
22.90%
发文量
306
审稿时长
4.4 months
期刊介绍: The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects. Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.
期刊最新文献
Aerodynamic characteristics of windbreak wall–wind barrier transition section along high-speed railways during strong crosswinds Numerical study on ventilation duct layout in subway stations for smoke control performance optimization Vortex induced vibration analysis of a twin-box bridge deck by means of 3D LES simulations An enhanced empirical model for moving downburst wind profiles: Integration with CFD simulations Full-scale monitoring of a telecommunication lattice tower under synoptic and thunderstorm winds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1