Jiapeng Wan , Yizhu Shen , Yifan Ding , Sanming Hu
{"title":"A 132–170 GHz high-gain driving amplifier utilizing asymmetric broadside coupled line in 40-nm CMOS","authors":"Jiapeng Wan , Yizhu Shen , Yifan Ding , Sanming Hu","doi":"10.1016/j.aeue.2024.155544","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a driving amplifier (DA) utilizing the proposed asymmetric broadside coupled line. In contrast to conventional coupled line, the balun devised with proposed asymmetric coupled line and enhanced wideband balance compensation technique is utilized, thereby achieving wideband impedance matching and mitigating insertion loss. Additionally, the utilization of the lossy over-neutralization technique substantially enhances the power gain of amplifiers operating in the upper millimeter-wave band (150 GHz–300 GHz). The DA is fabricated utilizing a 40-nm CMOS process without aluminum layers. The fabricated amplifier demonstrates a compact total area of 0.135 mm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> (0.031 <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>), with a core area of 0.027 mm<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> (0.0061 <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>). It achieves a high gain of 19.4 dB, high power of 11.05 dBm, and high power-added efficiency (PAE) of 11.05% at 160 GHz. Moreover, both the 3-dB power gain bandwidth and the 3-dB saturated power bandwidth extend from 132 GHz to 170 GHz, covering a bandwidth of 38 GHz. This configuration underscores the robust performance of the DA in the upper millimeter-wave band.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"187 ","pages":"Article 155544"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841124004308","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a driving amplifier (DA) utilizing the proposed asymmetric broadside coupled line. In contrast to conventional coupled line, the balun devised with proposed asymmetric coupled line and enhanced wideband balance compensation technique is utilized, thereby achieving wideband impedance matching and mitigating insertion loss. Additionally, the utilization of the lossy over-neutralization technique substantially enhances the power gain of amplifiers operating in the upper millimeter-wave band (150 GHz–300 GHz). The DA is fabricated utilizing a 40-nm CMOS process without aluminum layers. The fabricated amplifier demonstrates a compact total area of 0.135 mm (0.031 ), with a core area of 0.027 mm (0.0061 ). It achieves a high gain of 19.4 dB, high power of 11.05 dBm, and high power-added efficiency (PAE) of 11.05% at 160 GHz. Moreover, both the 3-dB power gain bandwidth and the 3-dB saturated power bandwidth extend from 132 GHz to 170 GHz, covering a bandwidth of 38 GHz. This configuration underscores the robust performance of the DA in the upper millimeter-wave band.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.