{"title":"Correlating 300 million years of catastrophes","authors":"Alexei V. Ivanov","doi":"10.1016/j.epsl.2024.119058","DOIUrl":null,"url":null,"abstract":"<div><div>It is frequently proposed that large bolide impacts and voluminous volcanic eruptions may be responsible for environmental catastrophes. In the conventional approach, the potential causes and consequences are matched using an age-versus-age plot, with preferential ages selected for comparison. This approach inevitably results in a one-to-one correlation, which may be misleading. To address this issue, a novel statistical metric, named conformity, has been proposed which accounts for the possibility of age coincidence resulting from random processes (i.e. bad luck coincidence). The available and updated geochronological datasets of bolide impacts, large igneous provinces, CO<sub>2</sub>-concentration peaks in the atmosphere, mass extinctions, ocean anoxic events, and climatic optima and thermal highs were subjected to a comparison in terms of their concordance. The most significant discovery is the correlation between the ages of mass extinctions and those of giant bolide impacts (crater diameter >40 km), as well as volcanism of continental large igneous provinces and CO<sub>2</sub>-concentration peaks in the atmosphere. The severity of mass extinctions appears to be dependent upon the number of simultaneously occurring causes. The most pronounced Late Maastrichtian (∼66 Ma) and Changhsingian (∼252 Ma) mass extinctions were likely caused by a combination of factors, including the simultaneous occurrence of volcanism of continental large igneous provinces, giant bolide impact and CO<sub>2</sub>-concentration rise in the atmosphere. Conversely, the ages of large igneous provinces, bolide impacts and CO<sub>2</sub>-concentration peaks are not correlated, indicating that these three causes were not interdependent.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"647 ","pages":"Article 119058"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24004904","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is frequently proposed that large bolide impacts and voluminous volcanic eruptions may be responsible for environmental catastrophes. In the conventional approach, the potential causes and consequences are matched using an age-versus-age plot, with preferential ages selected for comparison. This approach inevitably results in a one-to-one correlation, which may be misleading. To address this issue, a novel statistical metric, named conformity, has been proposed which accounts for the possibility of age coincidence resulting from random processes (i.e. bad luck coincidence). The available and updated geochronological datasets of bolide impacts, large igneous provinces, CO2-concentration peaks in the atmosphere, mass extinctions, ocean anoxic events, and climatic optima and thermal highs were subjected to a comparison in terms of their concordance. The most significant discovery is the correlation between the ages of mass extinctions and those of giant bolide impacts (crater diameter >40 km), as well as volcanism of continental large igneous provinces and CO2-concentration peaks in the atmosphere. The severity of mass extinctions appears to be dependent upon the number of simultaneously occurring causes. The most pronounced Late Maastrichtian (∼66 Ma) and Changhsingian (∼252 Ma) mass extinctions were likely caused by a combination of factors, including the simultaneous occurrence of volcanism of continental large igneous provinces, giant bolide impact and CO2-concentration rise in the atmosphere. Conversely, the ages of large igneous provinces, bolide impacts and CO2-concentration peaks are not correlated, indicating that these three causes were not interdependent.
期刊介绍:
Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.