Subduction-stalled plume tail triggers Tarim large igneous province

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Earth and Planetary Science Letters Pub Date : 2024-11-30 DOI:10.1016/j.epsl.2024.119150
Kai Wang , Keqing Li , Keda Cai , Xiangsong Wang , Jiashun Hu
{"title":"Subduction-stalled plume tail triggers Tarim large igneous province","authors":"Kai Wang ,&nbsp;Keqing Li ,&nbsp;Keda Cai ,&nbsp;Xiangsong Wang ,&nbsp;Jiashun Hu","doi":"10.1016/j.epsl.2024.119150","DOIUrl":null,"url":null,"abstract":"<div><div>Cold slab subduction and hot plume burst are generally envisaged as independent triggers for convergent margin and intraplate magmatisms, respectively. However, descending oceanic plates occasionally encounter ascending mantle plumes, leading to contrasting hypotheses that plumes interrupt subduction processes and/or slabs choke plume pathways. This study used 2-D numerical simulation to reproduce a Paleozoic scenario in Central Asia where a subduction-induced plume head is invoked to interpret the formation of the Tarim large igneous province (LIP). The model assumes a long-lived mantle plume beneath the South Tianshan oceanic plate adjacent to the trench. As subduction initiated, plume materials spread first under the moving oceanic lithosphere, which developed a sequence of seamounts. Subsequently, the continual subduction drove a strong downwelling flow that stalled or restricted plume ascent in the upper mantle and caused the accumulation of hot materials in the uppermost lower mantle. Ultimately, the slab break-off after collision provided an opening pathway allowing for the accumulated hot materials to reach the surface, resulting in the development of a concurrent plume head and the formation of LIP on the overriding Tarim craton. Bending and rollover of the subducted oceanic lithosphere beneath an implemented stationary trench may contribute slab components to the LIP source, which can reasonably explain the slab-like geochemical fingerprints of basaltic rocks. Our work offers a tentative interpretation for the paradox that seamount formation preceded the LIP eruption in Tianshan and highlights possible slab effects, where subduction can stall the plume tail, causing heat accumulation that triggers a LIP.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"651 ","pages":"Article 119150"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X2400582X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cold slab subduction and hot plume burst are generally envisaged as independent triggers for convergent margin and intraplate magmatisms, respectively. However, descending oceanic plates occasionally encounter ascending mantle plumes, leading to contrasting hypotheses that plumes interrupt subduction processes and/or slabs choke plume pathways. This study used 2-D numerical simulation to reproduce a Paleozoic scenario in Central Asia where a subduction-induced plume head is invoked to interpret the formation of the Tarim large igneous province (LIP). The model assumes a long-lived mantle plume beneath the South Tianshan oceanic plate adjacent to the trench. As subduction initiated, plume materials spread first under the moving oceanic lithosphere, which developed a sequence of seamounts. Subsequently, the continual subduction drove a strong downwelling flow that stalled or restricted plume ascent in the upper mantle and caused the accumulation of hot materials in the uppermost lower mantle. Ultimately, the slab break-off after collision provided an opening pathway allowing for the accumulated hot materials to reach the surface, resulting in the development of a concurrent plume head and the formation of LIP on the overriding Tarim craton. Bending and rollover of the subducted oceanic lithosphere beneath an implemented stationary trench may contribute slab components to the LIP source, which can reasonably explain the slab-like geochemical fingerprints of basaltic rocks. Our work offers a tentative interpretation for the paradox that seamount formation preceded the LIP eruption in Tianshan and highlights possible slab effects, where subduction can stall the plume tail, causing heat accumulation that triggers a LIP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
俯冲停滞羽尾触发塔里木大火成岩省
一般认为,冷板块俯冲和热羽喷发分别是辐合边缘和板内岩浆活动的独立触发因素。然而,下降的海洋板块偶尔会遇到上升的地幔柱,这就导致了相反的假设,即地幔柱中断了俯冲过程和/或板块阻塞了地幔柱的路径。本文利用二维数值模拟再现了中亚地区古生代的情景,在该情景中,俯冲引起的羽头被用来解释塔里木大火成岩省(LIP)的形成。该模型假定在与海沟相邻的南天山大洋板块下存在一个长期存在的地幔柱。随着俯冲作用的开始,地幔柱物质首先在运动的海洋岩石圈下扩散,形成了一系列海底山。随后,持续的俯冲作用驱动了强烈的下涌流,阻止或限制了上地幔的羽流上升,并导致热物质在下地幔的最上层积累。最终,碰撞后的板块断裂为积累的热物质到达地表提供了一个开放的通道,导致在上覆的塔里木克拉通上并发羽头的发育和LIP的形成。静止海沟下俯冲洋岩石圈的弯曲和翻滚可能为LIP源提供了板块成分,这可以合理地解释玄武岩的类板块地球化学指纹。我们的工作为海山形成先于天山LIP喷发的悖论提供了一个尝试性的解释,并强调了可能的板块效应,其中俯冲可以阻止羽流尾部,导致热量积累,从而引发LIP喷发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
期刊最新文献
Elemental-organic geochemical evidence for the lacustrine metalimnetic oxygen minimum dynamics in the Mid-Late Triassic Chang 7 shales Inverted metamorphic gradient in the Zanhuang nappe/thrust system, north China indicates large-scale thrust stacking in an Archean Orogen Subduction-stalled plume tail triggers Tarim large igneous province Editorial Board Diffusion of Sr and Ba in plagioclase: Composition and silica activity dependencies, and application to volcanic rocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1