A first-principles adsorption study of functionalized carbon, boron nitride, silicon carbon nanotubes with ifosfamide as vehicles for drug delivery: Thermal analysis
{"title":"A first-principles adsorption study of functionalized carbon, boron nitride, silicon carbon nanotubes with ifosfamide as vehicles for drug delivery: Thermal analysis","authors":"","doi":"10.1016/j.csite.2024.105244","DOIUrl":null,"url":null,"abstract":"<div><div>We investigated the adsorption of ifosfamide (IFS) on the outer surface of zigzag (10, 0) carbon nanotubes (CNT), boron nitride nanotubes (BNNT), and silicon carbon nanotubes (SiCNT), using density functional theory (DFT) calculations at the PBE-D3 level in a water solvent phase. Based on zero-point corrected binding energies (E<sub>bin</sub>), IFS exhibits chemisorption through its O-head and Cl-head on CNT (−1.05 eV) compared to BNNT (−0.93 eV), characterized by covalent interaction. In contrast, IFS undergoes physisorption via its O-head on SiCNT with binding energy of −0.68 eV as the most stable model this interaction is driven by electrostatic forces. The formation of complexes between the drug and nanotubes is influenced by charge transfer dynamics. Our thermodynamic analysis demonstrates the Gibbs free energy (ΔG) and enthalpy energy (ΔH) for all models are exothermic and spontaneous. The observed decrease in binding energy for BNNT and CNT correlates with changes in their energy gap, dipole moment, and charge transfer upon IFS adsorption. Notably, SiCNT exhibits a different response with a significant energy gap change leading to an increase in dipole moment and charge transfer. These findings suggest that these nanotubes demonstrate promising sensitivity to the presence of IFS and could be explored as potential drug delivery systems for this drug.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24012759","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated the adsorption of ifosfamide (IFS) on the outer surface of zigzag (10, 0) carbon nanotubes (CNT), boron nitride nanotubes (BNNT), and silicon carbon nanotubes (SiCNT), using density functional theory (DFT) calculations at the PBE-D3 level in a water solvent phase. Based on zero-point corrected binding energies (Ebin), IFS exhibits chemisorption through its O-head and Cl-head on CNT (−1.05 eV) compared to BNNT (−0.93 eV), characterized by covalent interaction. In contrast, IFS undergoes physisorption via its O-head on SiCNT with binding energy of −0.68 eV as the most stable model this interaction is driven by electrostatic forces. The formation of complexes between the drug and nanotubes is influenced by charge transfer dynamics. Our thermodynamic analysis demonstrates the Gibbs free energy (ΔG) and enthalpy energy (ΔH) for all models are exothermic and spontaneous. The observed decrease in binding energy for BNNT and CNT correlates with changes in their energy gap, dipole moment, and charge transfer upon IFS adsorption. Notably, SiCNT exhibits a different response with a significant energy gap change leading to an increase in dipole moment and charge transfer. These findings suggest that these nanotubes demonstrate promising sensitivity to the presence of IFS and could be explored as potential drug delivery systems for this drug.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.