Dandan Song , Minghui Yin , Zaiyu Chen , Lianjun Zhou , Yun Zou
{"title":"Maximum power point tracking control of wind turbines based on speed hysteresis loop to reduce drive-train loads","authors":"Dandan Song , Minghui Yin , Zaiyu Chen , Lianjun Zhou , Yun Zou","doi":"10.1016/j.epsr.2024.111110","DOIUrl":null,"url":null,"abstract":"<div><div>By adding compensation torque based on the optimal torque, the torque compensation control method expands the unbalanced torque at varying wind speeds, thereby improving the maximum power point tracking (MPPT) performance of wind turbines (WT). However, while improving the wind energy capture efficiency, such methods will lead to drastic fluctuations of generator torque, resulting in significantly increased drive-train loads. To solve this problem, based on the amplitude-frequency characteristics analysis of the WT system transfer function, it is found rotor speed information can not only reflect the main trend of wind speed changes, but also has the characteristics of not being easily affected by the high-frequency component of wind speed. Therefore, setting compensation torque according to it can effectively alleviate the above phenomenon. On this basis, the MPPT control of WT based on speed hysteresis loop to reduce drive-train loads is proposed. The speed information is used to replace the torque information to set the compensation torque amplitude term, and the speed hysteresis loop is introduced to improve the design of the compensation torque symbol term, which can significantly decreased drive-train loads without compromising on power capture. Finally, the effectiveness of the proposed method is verified by the experiments.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"238 ","pages":"Article 111110"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779624009957","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
By adding compensation torque based on the optimal torque, the torque compensation control method expands the unbalanced torque at varying wind speeds, thereby improving the maximum power point tracking (MPPT) performance of wind turbines (WT). However, while improving the wind energy capture efficiency, such methods will lead to drastic fluctuations of generator torque, resulting in significantly increased drive-train loads. To solve this problem, based on the amplitude-frequency characteristics analysis of the WT system transfer function, it is found rotor speed information can not only reflect the main trend of wind speed changes, but also has the characteristics of not being easily affected by the high-frequency component of wind speed. Therefore, setting compensation torque according to it can effectively alleviate the above phenomenon. On this basis, the MPPT control of WT based on speed hysteresis loop to reduce drive-train loads is proposed. The speed information is used to replace the torque information to set the compensation torque amplitude term, and the speed hysteresis loop is introduced to improve the design of the compensation torque symbol term, which can significantly decreased drive-train loads without compromising on power capture. Finally, the effectiveness of the proposed method is verified by the experiments.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.