{"title":"A distributed end-to-end fair bandwidth allocation algorithm for multi-path networks","authors":"Haitao Wang , Lihua Song","doi":"10.1016/j.compeleceng.2024.109635","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-path transmission significantly improves network performance, yet it complicates the problem of fair resource allocation. While traditional fair bandwidth allocation schemes thrive in single-path settings, they often falter when applied to multi-path environments, highlighting the challenge of achieving fair bandwidth sharing in such networks. To tackle this issue, the concept of \"max-min similarity\" of queuing delays has been introduced based on insight into the intrinsic interactions between queuing packets, delays, and bandwidth allocation, which leads to a formal definition of max-min fair bandwidth allocation for multi-path environments. Theoretical analysis shows that the max-min similarity of queuing delays is a sufficient condition for max-min fair bandwidth allocation in single bottleneck environments. A novel distributed end-to-end fair bandwidth allocation algorithm, named DMFBA, is then proposed, which separates the control into flow-level and transmission path-level. In achieving max-min similarity in queuing delays by dynamically adjusting the distribution of flows’ queuing packet quotas across paths it achieves the goal of max-min fair bandwidth allocation. Two sets of numerical simulation experiments were conducted and the results show that DMFBA has less overhead and faster convergence than the traditional utility fair algorithms.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109635"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624005627","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-path transmission significantly improves network performance, yet it complicates the problem of fair resource allocation. While traditional fair bandwidth allocation schemes thrive in single-path settings, they often falter when applied to multi-path environments, highlighting the challenge of achieving fair bandwidth sharing in such networks. To tackle this issue, the concept of "max-min similarity" of queuing delays has been introduced based on insight into the intrinsic interactions between queuing packets, delays, and bandwidth allocation, which leads to a formal definition of max-min fair bandwidth allocation for multi-path environments. Theoretical analysis shows that the max-min similarity of queuing delays is a sufficient condition for max-min fair bandwidth allocation in single bottleneck environments. A novel distributed end-to-end fair bandwidth allocation algorithm, named DMFBA, is then proposed, which separates the control into flow-level and transmission path-level. In achieving max-min similarity in queuing delays by dynamically adjusting the distribution of flows’ queuing packet quotas across paths it achieves the goal of max-min fair bandwidth allocation. Two sets of numerical simulation experiments were conducted and the results show that DMFBA has less overhead and faster convergence than the traditional utility fair algorithms.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.