Chengcheng Yi , Yu Peng , Sheng Su , Bin Li , Xiaoqian Wang , Wenqing Zhou , Xin Guo , Hongming Yang , Wenchuan Meng
{"title":"Anomaly detection of photovoltaic power generation based on quantile regression recurrent neural network","authors":"Chengcheng Yi , Yu Peng , Sheng Su , Bin Li , Xiaoqian Wang , Wenqing Zhou , Xin Guo , Hongming Yang , Wenchuan Meng","doi":"10.1016/j.epsr.2024.111132","DOIUrl":null,"url":null,"abstract":"<div><div>Distributed photovoltaic (PV) power generation systems are widely spread. Moreover, due to the randomness of meteorological conditions and the complexity of installation environments, it is difficult to eliminate the interference of factors such as meteorological fluctuations in the monitoring of abnormal states of PV equipment. Based on this, this paper proposes a PV power generation anomaly detection method based on Quantile Regression Recurrent Neural Network (QRRNN). First, the characteristics of solar irradiance on clear days are analyzed, and the clear day masking method is used to eliminate the interference of cloudy and rainy weather. Then, the output correlation of different power stations is analyzed to obtain PV stations with high output correlation as the horizontal reference, which is used to exclude interferences such as permanent faults at the power stations. At the same time, vertical comparison of the output curves of the station under test on different clear days is conducted to eliminate interference factors such as weather and environmental conditions. Subsequently, the metered active power output data, which is free from interference, is input into the QRRNN model to obtain the normal active power output range of the PV. The power threshold of the normal output range is utilized to identify anomalies in PV power generation. Finally, simulation analysis of actual PV system data is conducted, and the results show that the method can effectively identify PV power generation anomalies and has high accuracy in PV fault detection.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"238 ","pages":"Article 111132"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779624010174","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Distributed photovoltaic (PV) power generation systems are widely spread. Moreover, due to the randomness of meteorological conditions and the complexity of installation environments, it is difficult to eliminate the interference of factors such as meteorological fluctuations in the monitoring of abnormal states of PV equipment. Based on this, this paper proposes a PV power generation anomaly detection method based on Quantile Regression Recurrent Neural Network (QRRNN). First, the characteristics of solar irradiance on clear days are analyzed, and the clear day masking method is used to eliminate the interference of cloudy and rainy weather. Then, the output correlation of different power stations is analyzed to obtain PV stations with high output correlation as the horizontal reference, which is used to exclude interferences such as permanent faults at the power stations. At the same time, vertical comparison of the output curves of the station under test on different clear days is conducted to eliminate interference factors such as weather and environmental conditions. Subsequently, the metered active power output data, which is free from interference, is input into the QRRNN model to obtain the normal active power output range of the PV. The power threshold of the normal output range is utilized to identify anomalies in PV power generation. Finally, simulation analysis of actual PV system data is conducted, and the results show that the method can effectively identify PV power generation anomalies and has high accuracy in PV fault detection.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.