{"title":"Digital twin-enhanced opportunistic maintenance of smart microgrids based on the risk importance measure","authors":"Hongyan Dui , Songru Zhang , Xinghui Dong , Shaomin Wu","doi":"10.1016/j.ress.2024.110548","DOIUrl":null,"url":null,"abstract":"<div><div>Smart microgrids face more diverse and frequent risks than traditional grids due to their complexity and reliance on distributed generation. Ensuring the reliable operation of smart microgrids requires effective maintenance. Traditional maintenance methods, based on periodic inspections and fault diagnosis, struggle to adapt to the dynamics and complexity of microgrid systems. The introduction of digital twin technology provides a new solution for the opportunistic maintenance of microgrid systems. This paper presents a digital twin microgrid architecture for real-time monitoring and decision-making in opportunistic maintenance. Meanwhile, this paper introduces a risk importance measure to aid to optimize opportunistic maintenance strategies when resources are limited. Finally, a wind-solar-storage microgrid is used to illustrate the proposed method. Experimental results show that the proposed method significantly reduces maintenance costs and improves system reliability, effectively supporting microgrid maintenance.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024006203","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Smart microgrids face more diverse and frequent risks than traditional grids due to their complexity and reliance on distributed generation. Ensuring the reliable operation of smart microgrids requires effective maintenance. Traditional maintenance methods, based on periodic inspections and fault diagnosis, struggle to adapt to the dynamics and complexity of microgrid systems. The introduction of digital twin technology provides a new solution for the opportunistic maintenance of microgrid systems. This paper presents a digital twin microgrid architecture for real-time monitoring and decision-making in opportunistic maintenance. Meanwhile, this paper introduces a risk importance measure to aid to optimize opportunistic maintenance strategies when resources are limited. Finally, a wind-solar-storage microgrid is used to illustrate the proposed method. Experimental results show that the proposed method significantly reduces maintenance costs and improves system reliability, effectively supporting microgrid maintenance.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.