Shihui Zhang , Zhigang Huang , Sheng Zhan , Ping Li , Zhiguo Cui , Feiyu Li
{"title":"Innovative multi-stage matching for counting anything","authors":"Shihui Zhang , Zhigang Huang , Sheng Zhan , Ping Li , Zhiguo Cui , Feiyu Li","doi":"10.1016/j.patrec.2024.09.014","DOIUrl":null,"url":null,"abstract":"<div><div>Few-shot counting (FSC) is the task of counting the number of objects in an image that belong to the same category, by using a provided exemplar pattern. By replacing the exemplar, we can effectively count anything, even in cases where we have no prior knowledge of that category’s exemplar. However, due to the variations within the same category and the impact of inter-class similarity, it is challenging to achieve accurate intra-class similarity matching using conventional similarity comparison methods. To tackle these issues, we propose a novel few-shot counting method called Multi-stage Exemplar Attention Match Network (MEAMNet), which increases the accuracy of matching, reduces the impact of noise, and enhances similarity feature matching. Specifically, we propose a multi-stage matching strategy to obtain more stable and effective matching results by acquiring similar feature in different feature spaces. In addition, we propose a novel feature matching module called Exemplar Attention Match (EAM). With this module, the intra-class similarity representation in each stage will be enhanced to achieve a better matching of the key feature. Experimental results indicate that our method not only significantly surpasses the state-of-the-art (SOTA) methods in most evaluation metrics on the FSC-147 dataset but also achieves comprehensive superiority on the CARPK dataset. This highlights the outstanding accuracy and stability of our matching performance, as well as its exceptional transferability. We will release the code at <span><span>https://github.com/hzg0505/MEAMNet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"186 ","pages":"Pages 141-147"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002769","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Few-shot counting (FSC) is the task of counting the number of objects in an image that belong to the same category, by using a provided exemplar pattern. By replacing the exemplar, we can effectively count anything, even in cases where we have no prior knowledge of that category’s exemplar. However, due to the variations within the same category and the impact of inter-class similarity, it is challenging to achieve accurate intra-class similarity matching using conventional similarity comparison methods. To tackle these issues, we propose a novel few-shot counting method called Multi-stage Exemplar Attention Match Network (MEAMNet), which increases the accuracy of matching, reduces the impact of noise, and enhances similarity feature matching. Specifically, we propose a multi-stage matching strategy to obtain more stable and effective matching results by acquiring similar feature in different feature spaces. In addition, we propose a novel feature matching module called Exemplar Attention Match (EAM). With this module, the intra-class similarity representation in each stage will be enhanced to achieve a better matching of the key feature. Experimental results indicate that our method not only significantly surpasses the state-of-the-art (SOTA) methods in most evaluation metrics on the FSC-147 dataset but also achieves comprehensive superiority on the CARPK dataset. This highlights the outstanding accuracy and stability of our matching performance, as well as its exceptional transferability. We will release the code at https://github.com/hzg0505/MEAMNet.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.