Age and petrogenesis of the Madi intrusion in the Huashi area, northern margin of the North China Craton: Implications for magma evolution and Nb–Ta mineralization
ChenYu Liu , GongZheng Chen , ChenChun Zhang , JinFang Wang , Guang Wu , YingJie Li , KangShuo Li , ZeQian Lu , YuTong Song
{"title":"Age and petrogenesis of the Madi intrusion in the Huashi area, northern margin of the North China Craton: Implications for magma evolution and Nb–Ta mineralization","authors":"ChenYu Liu , GongZheng Chen , ChenChun Zhang , JinFang Wang , Guang Wu , YingJie Li , KangShuo Li , ZeQian Lu , YuTong Song","doi":"10.1016/j.oregeorev.2024.106261","DOIUrl":null,"url":null,"abstract":"<div><div>Although the mineralization of rare earth elements (REEs) and rare metals is intimately associated with the extreme fractionation of granitic magmas, the metallogenic intrusions of many granite-hosted Nb–Ta deposits have undergone fluid–melt interaction. Nevertheless, the precise mechanisms by which fluid–melt interaction influences mineralization remain poorly understood. The present investigation examines the issues of the fluid–melt interaction in highly fractionated granites with Nb–Ta mineralization, utilizing data from the newfound Huashi deposit in the northern margin of the North China Craton (NNCC). The Huashi Nb–Ta–Rb–Li deposit hosted in the Madi intrusion consists of two lithologies that have evolved continuously, namely medium–fine grained granite (MGG) in the lower section and alkali-feldspar granite (AG) at the top. The ages of the MGG and AG were determined using LA–ICP–MS columbite U–Pb dating, yielding values of 182.9 ± 1.7 Ma and 184.7 ± 1.3 Ma, respectively. The Madi intrusion has high SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and total alkali contents, along with low CaO, MgO, MnO, and TFe<sub>2</sub>O<sub>3</sub> contents and high Al<sub>2</sub>O<sub>3</sub> / (CaO + Na<sub>2</sub>O + K<sub>2</sub>O) (A/CNK) values, classifying it as highly peraluminous granite with a high-K calc-alkaline affinity. Additionally, the intrusion also exhibits enrichment in Rb, U, Th, and Nb alongside significant depletion in Sr, Ba, Ti, Eu, and P, with a noticeable tetrad effect of REEs. The investigation of mica and feldspar minerals in the Madi intrusion using electron probe microanalysis (EPMA) indicates that the mica is mainly zinnwaldite, while the plagioclase belongs to albite. In summary, the Madi intrusion exhibits a highly I-type fractionated granite affinity. The extreme fractionation, intense fluid–melt interaction, and hydrothermal alteration of the intrusion contribute to the formation of the Huashi deposit.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore Geology Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169136824003949","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although the mineralization of rare earth elements (REEs) and rare metals is intimately associated with the extreme fractionation of granitic magmas, the metallogenic intrusions of many granite-hosted Nb–Ta deposits have undergone fluid–melt interaction. Nevertheless, the precise mechanisms by which fluid–melt interaction influences mineralization remain poorly understood. The present investigation examines the issues of the fluid–melt interaction in highly fractionated granites with Nb–Ta mineralization, utilizing data from the newfound Huashi deposit in the northern margin of the North China Craton (NNCC). The Huashi Nb–Ta–Rb–Li deposit hosted in the Madi intrusion consists of two lithologies that have evolved continuously, namely medium–fine grained granite (MGG) in the lower section and alkali-feldspar granite (AG) at the top. The ages of the MGG and AG were determined using LA–ICP–MS columbite U–Pb dating, yielding values of 182.9 ± 1.7 Ma and 184.7 ± 1.3 Ma, respectively. The Madi intrusion has high SiO2, Al2O3, and total alkali contents, along with low CaO, MgO, MnO, and TFe2O3 contents and high Al2O3 / (CaO + Na2O + K2O) (A/CNK) values, classifying it as highly peraluminous granite with a high-K calc-alkaline affinity. Additionally, the intrusion also exhibits enrichment in Rb, U, Th, and Nb alongside significant depletion in Sr, Ba, Ti, Eu, and P, with a noticeable tetrad effect of REEs. The investigation of mica and feldspar minerals in the Madi intrusion using electron probe microanalysis (EPMA) indicates that the mica is mainly zinnwaldite, while the plagioclase belongs to albite. In summary, the Madi intrusion exhibits a highly I-type fractionated granite affinity. The extreme fractionation, intense fluid–melt interaction, and hydrothermal alteration of the intrusion contribute to the formation of the Huashi deposit.
期刊介绍:
Ore Geology Reviews aims to familiarize all earth scientists with recent advances in a number of interconnected disciplines related to the study of, and search for, ore deposits. The reviews range from brief to longer contributions, but the journal preferentially publishes manuscripts that fill the niche between the commonly shorter journal articles and the comprehensive book coverages, and thus has a special appeal to many authors and readers.