Petrogenesis and Sc mineralization potential of the early Silurian Halaguole Alaskan-type complex in the East Kunlun orogenic belt

IF 3.2 2区 地球科学 Q1 GEOLOGY Ore Geology Reviews Pub Date : 2024-12-01 DOI:10.1016/j.oregeorev.2024.106354
Lingyun Sun , Xiaoliang Li , De Yang , Jien Dong , Xiaoliang Yu , Hua Li , Ye Qian , Chao Wang , Fengyue Sun
{"title":"Petrogenesis and Sc mineralization potential of the early Silurian Halaguole Alaskan-type complex in the East Kunlun orogenic belt","authors":"Lingyun Sun ,&nbsp;Xiaoliang Li ,&nbsp;De Yang ,&nbsp;Jien Dong ,&nbsp;Xiaoliang Yu ,&nbsp;Hua Li ,&nbsp;Ye Qian ,&nbsp;Chao Wang ,&nbsp;Fengyue Sun","doi":"10.1016/j.oregeorev.2024.106354","DOIUrl":null,"url":null,"abstract":"<div><div>The Alaskan-type complexes are known for their unique annular lithologic zoning structure and are products of an island arc environment. The Halaguole mafic–ultramafic intrusions in the Kunlun orogenic belt, as reported in this study, exhibit characteristics of an Alaskan-type complex. The complex is composed of peridotite, pyroxenite, and gabbro, with well-defined annular lithological zoning from the core to the margin. The Halaguole mafic–ultramafic intrusions were formed during the Early Silurian period, specifically ranging from 437 Ma to 440 Ma according to Zircon LA-ICP-MS U-Pb dating results. They are enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE), revealing positive europium (Eu) anomalies and negative niobium (Nb) anomalies. All of these characteristics indicate that they are products of an island arc environment. Based on analysis of zircon’s εHf(t) value (0.25 to 5.14) and model age (TDM1) (842.19 to 1034.61 Ma), it can be deduced that the intrusions originated from an enriched mantle source. The dominant mineral compositions within the Halaguole intrusions include olivine, clinopyroxene, amphibole, biotite, and spinel. With the absence of orthopyroxene, the compositions of these minerals are similar to Alaskan-type complexes. The contents of olvine, biotite, and spinel suggest that the parental melt of these intrusions is an aqueous basaltic magma with island arc properties. The Halaguole mafic–ultramafic intrusions likely formed through partial melting of the mantle wedge metasomatized by fluids from the subduction zone. This process was accomplished by fractional crystallization of magma. Combining the findings of previous research with the evidence presented in this study, it can be deduced that the closure of the Proto-Tethys Ocean occurred during the Early Silurian. Furthermore, it is evident that the Wanbaogou basaltic plateau in the Southern Kunlun Belt (SKB) underwent bidirectional subduction in a north–south direction. Notably, the samples from pyroxene peridotite and gabbro exhibit a significant concentration of Sc, ranging from 41.5 to 224.5 ppm, exceeding industrial grade levels and indicating excellent potential for Sc mineralization.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"175 ","pages":"Article 106354"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore Geology Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169136824004876","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Alaskan-type complexes are known for their unique annular lithologic zoning structure and are products of an island arc environment. The Halaguole mafic–ultramafic intrusions in the Kunlun orogenic belt, as reported in this study, exhibit characteristics of an Alaskan-type complex. The complex is composed of peridotite, pyroxenite, and gabbro, with well-defined annular lithological zoning from the core to the margin. The Halaguole mafic–ultramafic intrusions were formed during the Early Silurian period, specifically ranging from 437 Ma to 440 Ma according to Zircon LA-ICP-MS U-Pb dating results. They are enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE), revealing positive europium (Eu) anomalies and negative niobium (Nb) anomalies. All of these characteristics indicate that they are products of an island arc environment. Based on analysis of zircon’s εHf(t) value (0.25 to 5.14) and model age (TDM1) (842.19 to 1034.61 Ma), it can be deduced that the intrusions originated from an enriched mantle source. The dominant mineral compositions within the Halaguole intrusions include olivine, clinopyroxene, amphibole, biotite, and spinel. With the absence of orthopyroxene, the compositions of these minerals are similar to Alaskan-type complexes. The contents of olvine, biotite, and spinel suggest that the parental melt of these intrusions is an aqueous basaltic magma with island arc properties. The Halaguole mafic–ultramafic intrusions likely formed through partial melting of the mantle wedge metasomatized by fluids from the subduction zone. This process was accomplished by fractional crystallization of magma. Combining the findings of previous research with the evidence presented in this study, it can be deduced that the closure of the Proto-Tethys Ocean occurred during the Early Silurian. Furthermore, it is evident that the Wanbaogou basaltic plateau in the Southern Kunlun Belt (SKB) underwent bidirectional subduction in a north–south direction. Notably, the samples from pyroxene peridotite and gabbro exhibit a significant concentration of Sc, ranging from 41.5 to 224.5 ppm, exceeding industrial grade levels and indicating excellent potential for Sc mineralization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ore Geology Reviews
Ore Geology Reviews 地学-地质学
CiteScore
6.50
自引率
27.30%
发文量
546
审稿时长
22.9 weeks
期刊介绍: Ore Geology Reviews aims to familiarize all earth scientists with recent advances in a number of interconnected disciplines related to the study of, and search for, ore deposits. The reviews range from brief to longer contributions, but the journal preferentially publishes manuscripts that fill the niche between the commonly shorter journal articles and the comprehensive book coverages, and thus has a special appeal to many authors and readers.
期刊最新文献
Ore-forming process of the Saibagou gold deposit in the Northern Qaidam Orogen: Evidence from fluid inclusions, D-O isotopes and pyrite geochemistry Machine learning for deciphering ore-forming fluid sources using scheelite trace element geochemistry Shortwave infrared (SWIR) spectroscopy for greenfield exploration: Investigating the Bayi-Muchang prospect within the Jiama giant Porphyry-Skarn system Scheelite texture and composition fingerprint skarn mineralization of the giant Yuku Mo-W deposit, Central China Petrogenesis and Sc mineralization potential of the early Silurian Halaguole Alaskan-type complex in the East Kunlun orogenic belt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1