Adam Kotler , Anthony Morales , Sheikh Salauddin , Daniel Rosato , Mason Thornton , Hardeo M. Chin , Zachary White , Kareem Ahmed
{"title":"Realization of a standing normal detonation for hypersonic propulsion","authors":"Adam Kotler , Anthony Morales , Sheikh Salauddin , Daniel Rosato , Mason Thornton , Hardeo M. Chin , Zachary White , Kareem Ahmed","doi":"10.1016/j.combustflame.2024.113780","DOIUrl":null,"url":null,"abstract":"<div><div>A standing normal detonation mode of combustion consisting of a normal shock coupled with heat release is realized in an experimental high-speed reacting-flow facility. The normal detonation is stabilized using a 2D ramp where the high-enthalpy freestream Mach number and reactant composition is equivalently matched to the Chapman-Jouguet (CJ) consumption speed of the detonation, at <em>M<sub>∞</sub>/M<sub>CJ</sub></em> = 1.06. High resolution optical measurements of OH* chemiluminescence and density gradients from schlieren clearly show the close-coupling between the normal shock and the heat release of the standing detonation. A ZND analysis have been conducted using the boundary conditions where the induction length is found to closely matches the experimentally measured induction length. The agreement between the induction length scales and the freestream Mach number to detonation CJ Mach number confirm the realization of a standing detonation mode of combustion.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113780"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024004899","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
A standing normal detonation mode of combustion consisting of a normal shock coupled with heat release is realized in an experimental high-speed reacting-flow facility. The normal detonation is stabilized using a 2D ramp where the high-enthalpy freestream Mach number and reactant composition is equivalently matched to the Chapman-Jouguet (CJ) consumption speed of the detonation, at M∞/MCJ = 1.06. High resolution optical measurements of OH* chemiluminescence and density gradients from schlieren clearly show the close-coupling between the normal shock and the heat release of the standing detonation. A ZND analysis have been conducted using the boundary conditions where the induction length is found to closely matches the experimentally measured induction length. The agreement between the induction length scales and the freestream Mach number to detonation CJ Mach number confirm the realization of a standing detonation mode of combustion.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.