Direct numerical simulations of turbulent premixed cool flames: Global and local flame dynamics analysis

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Combustion and Flame Pub Date : 2024-10-04 DOI:10.1016/j.combustflame.2024.113759
Yiqing Wang , Chao Xu , Cheng Chi , Zheng Chen
{"title":"Direct numerical simulations of turbulent premixed cool flames: Global and local flame dynamics analysis","authors":"Yiqing Wang ,&nbsp;Chao Xu ,&nbsp;Cheng Chi ,&nbsp;Zheng Chen","doi":"10.1016/j.combustflame.2024.113759","DOIUrl":null,"url":null,"abstract":"<div><div>The cool flame dynamics, especially in turbulent flows, is of great interest for both practical application and fundamental research. In this study, a series of direct numerical simulations of turbulent premixed <em>n</em>-C<span><math><msub><mrow></mrow><mrow><mn>7</mn></mrow></msub></math></span>H<sub>16</sub>/O<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>/O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>/N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> cool flames are performed, with the focus on the influence of turbulence intensity (<span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>, where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> is the laminar flame speed) on the flame structure as well as the global and local cool flame dynamics. It is found that the cool flame front is considerably wrinkled by turbulence at high <span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>, leading to significantly thickened turbulent cool flame brush and largely altered local reactivity compared with the reference laminar flame. However, the turbulent flame structure in the temperature space is found to be insensitive to <span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>. Besides, with increasing <span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>, the normalized turbulent cool flame speed (<span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>) is monotonically increased, attributed to substantial augmentation on the flame surface area (<span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>/</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>), while the stretching factor (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) remains almost constant and is smaller than 1. The underlying mechanisms for such variations are revealed through local flame dynamics analysis. Specifically, the local flame displacement speed <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> is found to be strongly negatively correlated with flame curvature; meanwhile, such negative correlation and the probability distribution function (PDF) of flame curvature are barely influenced by <span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>, leading to a weak dependence of <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> on <span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span>. In contrast, the PDF of the tangential strain rate is found to span a much wider range and shift to the positive side as <span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>L</mi></mrow></msub></mrow></math></span> increases, suggesting that the enhanced tangential strain rate is the main cause for the increase in surface area of the turbulent premixed cool flame. Finally, the influence of equivalence ratio on above findings is found to be insignificant, indicating that although the local reactivity of turbulent premixed cool flames is altered due to the differential diffusion, the resultant flame-stretch interaction is insensitive to the equivalence ratio. This study presents some unique cool flame dynamics that are distinct from hot flames, which can help improve the understanding and modeling of turbulent cool flames.</div><div><strong>Novelty and Significance Statement</strong></div><div>The novelty of this work is that the combined global and local flame dynamics analyses are conducted for isolated turbulent premixed cool flames for the first time. It is found that with increasing turbulence intensity, the normalized turbulent cool flame speed increases monotonically due to substantial increase on flame surface area, whereas the stretching factor remains almost constant. The underlying mechanisms for these trends are revealed through the local flame dynamics analysis. Besides, the influence of equivalence ratio is found to be insignificant on the cool flame dynamics. Results from this work demonstrate that the turbulent premixed cool flame features some similar characteristics as the turbulent hot flames with Lewis number larger than 1, but more importantly, it also present some unique characteristics which are distinct from hot flames. Therefore, this study contributes to a better understanding of cool flame dynamics.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113759"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024004681","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The cool flame dynamics, especially in turbulent flows, is of great interest for both practical application and fundamental research. In this study, a series of direct numerical simulations of turbulent premixed n-C7H16/O2/O3/N2 cool flames are performed, with the focus on the influence of turbulence intensity (u/SL, where SL is the laminar flame speed) on the flame structure as well as the global and local cool flame dynamics. It is found that the cool flame front is considerably wrinkled by turbulence at high u/SL, leading to significantly thickened turbulent cool flame brush and largely altered local reactivity compared with the reference laminar flame. However, the turbulent flame structure in the temperature space is found to be insensitive to u/SL. Besides, with increasing u/SL, the normalized turbulent cool flame speed (ST/SL) is monotonically increased, attributed to substantial augmentation on the flame surface area (AT/AL), while the stretching factor (I0) remains almost constant and is smaller than 1. The underlying mechanisms for such variations are revealed through local flame dynamics analysis. Specifically, the local flame displacement speed Sd is found to be strongly negatively correlated with flame curvature; meanwhile, such negative correlation and the probability distribution function (PDF) of flame curvature are barely influenced by u/SL, leading to a weak dependence of I0 on u/SL. In contrast, the PDF of the tangential strain rate is found to span a much wider range and shift to the positive side as u/SL increases, suggesting that the enhanced tangential strain rate is the main cause for the increase in surface area of the turbulent premixed cool flame. Finally, the influence of equivalence ratio on above findings is found to be insignificant, indicating that although the local reactivity of turbulent premixed cool flames is altered due to the differential diffusion, the resultant flame-stretch interaction is insensitive to the equivalence ratio. This study presents some unique cool flame dynamics that are distinct from hot flames, which can help improve the understanding and modeling of turbulent cool flames.
Novelty and Significance Statement
The novelty of this work is that the combined global and local flame dynamics analyses are conducted for isolated turbulent premixed cool flames for the first time. It is found that with increasing turbulence intensity, the normalized turbulent cool flame speed increases monotonically due to substantial increase on flame surface area, whereas the stretching factor remains almost constant. The underlying mechanisms for these trends are revealed through the local flame dynamics analysis. Besides, the influence of equivalence ratio is found to be insignificant on the cool flame dynamics. Results from this work demonstrate that the turbulent premixed cool flame features some similar characteristics as the turbulent hot flames with Lewis number larger than 1, but more importantly, it also present some unique characteristics which are distinct from hot flames. Therefore, this study contributes to a better understanding of cool flame dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
湍流预混冷焰的直接数值模拟:全局和局部火焰动力学分析
冷火焰动力学,尤其是湍流中的冷火焰动力学,在实际应用和基础研究中都具有重要意义。本研究对 n-C7H16/O2/O3/N2 冷火焰进行了一系列直接数值模拟,重点研究了湍流强度(u′/SL,其中 SL 为层流火焰速度)对火焰结构以及全局和局部冷火焰动力学的影响。研究发现,与参考层流火焰相比,u′/SL 较高时,冷却火焰前沿受湍流影响较大,导致湍流冷却火焰刷明显变粗,局部反应性发生很大变化。然而,温度空间中的湍流火焰结构对 u′/SL 并不敏感。此外,随着 u′/SL 的增加,归一化湍流冷焰速度(ST/SL)单调增加,这归因于火焰表面积(AT/AL)的大幅增加,而拉伸因子(I0)几乎保持不变且小于 1。具体来说,局部火焰位移速度 Sd 与火焰曲率呈强负相关;同时,这种负相关和火焰曲率的概率分布函数 (PDF) 几乎不受 u′/SL 的影响,从而导致 I0 对 u′/SL 的依赖性很弱。与此相反,切向应变率的 PDF 范围更广,并且随着 u′/SL 的增大而向正方向移动,这表明切向应变率的增强是湍流预混合冷却火焰表面积增大的主要原因。最后,研究发现等效比对上述结论的影响并不显著,这表明虽然湍流预混冷焰的局部反应性因差分扩散而发生了改变,但由此产生的火焰-伸长相互作用对等效比并不敏感。这项研究提出了一些有别于热火焰的独特冷火焰动力学,有助于提高对湍流冷火焰的理解和建模。新颖性和意义声明这项工作的新颖性在于首次对孤立的湍流预混合冷火焰进行了全局和局部火焰动力学综合分析。研究发现,随着湍流强度的增加,由于火焰表面积的大幅增加,归一化湍流冷却火焰速度单调增加,而拉伸因子几乎保持不变。通过局部火焰动力学分析,揭示了这些趋势的内在机制。此外,还发现等效比对冷却火焰动力学的影响并不明显。研究结果表明,湍流预混冷焰具有一些与路易斯数大于 1 的湍流热焰相似的特征,但更重要的是,它也呈现出一些有别于热焰的独特特征。因此,这项研究有助于更好地理解冷火焰动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
期刊最新文献
A comprehensive parametric study on NO and N2O formation in ammonia-methane cofired premixed flames: Spatially resolved measurements and kinetic analysis Simultaneous Schlieren and direct photography of detonation diffraction regimes in hydrogen mixtures Elucidating high-pressure chemistry in acetylene oxidation: Jet-stirred reactor experiments, pressure effects, and kinetic interpretation A Bayesian approach to estimate flame spread model parameters over the cylindrical PMMA samples under various gravity conditions Ab initio intermolecular interactions mediate thermochemically real-fluid effects that affect system reactivity: The first application of high-order Virial EoS and first-principles multi-body potentials in trans-/super-critical autoignition modelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1