Youzhi Liu , Qianyang Sun , Dahai Zhang , Peiwei Zhang , Peifei Xu , Qingguo Fei
{"title":"In-plane biaxial fatigue life prediction model for high-cycle fatigue under synchronous sinusoidal loading","authors":"Youzhi Liu , Qianyang Sun , Dahai Zhang , Peiwei Zhang , Peifei Xu , Qingguo Fei","doi":"10.1016/j.ijfatigue.2024.108618","DOIUrl":null,"url":null,"abstract":"<div><div>The unique advantage of in-plane biaxial loading is no rotation of the maximum principal stress during cyclic loading, which has a distinct effect on fatigue life. This study aims to propose a life prediction model for in-plane biaxial fatigue encompassing both in-phase and out-of-phase conditions. For synchronous sinusoidal loadings, an equivalent stress expression is derived using the integral method, accounting for the influences of shear and normal stresses across all planes. The equivalent stress is then compared to a reversed uniaxial constant amplitude loading to predict fatigue life. To validate and compare the model, in-phase and out-of-phase in-plane biaxial fatigue experiments were conducted using 24 nickel-based superalloy cruciform specimens at temperatures of 420℃, 550℃, and 600℃. The results show that the proposed model is superior to conventional stress-invariant based models, with most results staying within the ± 2 error bands. Using the proposed model, the effects of mean tensile stress, biaxiality and phase shift are discussed. Additionally, a novel non-proportional factor is introduced to enhance multiaxial fatigue life prediction by distinctly separating the effects of principal stress and its directional variations.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108618"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324004778","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The unique advantage of in-plane biaxial loading is no rotation of the maximum principal stress during cyclic loading, which has a distinct effect on fatigue life. This study aims to propose a life prediction model for in-plane biaxial fatigue encompassing both in-phase and out-of-phase conditions. For synchronous sinusoidal loadings, an equivalent stress expression is derived using the integral method, accounting for the influences of shear and normal stresses across all planes. The equivalent stress is then compared to a reversed uniaxial constant amplitude loading to predict fatigue life. To validate and compare the model, in-phase and out-of-phase in-plane biaxial fatigue experiments were conducted using 24 nickel-based superalloy cruciform specimens at temperatures of 420℃, 550℃, and 600℃. The results show that the proposed model is superior to conventional stress-invariant based models, with most results staying within the ± 2 error bands. Using the proposed model, the effects of mean tensile stress, biaxiality and phase shift are discussed. Additionally, a novel non-proportional factor is introduced to enhance multiaxial fatigue life prediction by distinctly separating the effects of principal stress and its directional variations.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.