{"title":"Numerical analysis of gas-solid flow erosion in different geometries as alternatives to a standard pipe elbow","authors":"Ahmadreza Veiskarami, Maysam Saidi","doi":"10.1016/j.powtec.2024.120334","DOIUrl":null,"url":null,"abstract":"<div><div>This study was conducted with the aim of replacing different geometric fittings instead of the standard 90° elbow and trying to change the flow pattern to reduce erosion damage. Among fittings, the elbows are at a more serious risk. Numerical investigation of the present erosion with the novelty of research on non-spherical particles and changes in the impact angle of particles along with fluid flow using eight new proposed fittings, including two miter fittings, three blinded fittings, one reducer elbow fitting, and two spherical elbows fittings in comparison with the standard 90° elbow was controlled. The numerical simulation of the gas-solid two-phase flow of non-spherical particles was studied using the Euler-Lagrange approach. To carry out the study numerical, first, the gas flow was modeled by the Navier-Stokes equations and the turbulent Reynolds stress model, and then the solid particles were injected using Newton's equation. Finally, the erosion was calculated using Grant and Tabakoff model of the restitution of particles of after hitting the wall and the erosion model of Oka. The amount of erosion caused by changes in the flow pattern was investigated to evaluate the performance of the new proposed fittings. Numerical results for the most critical mode (V<sub>in</sub> = 27 m/s and D<sub>P</sub> = 300 μm) showed that the new proposed fittings increase the erosion resistance by 22.5 % to 39.6 % compared to the standard 90° elbow. Also, in this research, the effect of different parameters including flow velocity, particle diameter size, particle input rate, and particle rotation on erosion were investigated.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"448 ","pages":"Article 120334"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024009781","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study was conducted with the aim of replacing different geometric fittings instead of the standard 90° elbow and trying to change the flow pattern to reduce erosion damage. Among fittings, the elbows are at a more serious risk. Numerical investigation of the present erosion with the novelty of research on non-spherical particles and changes in the impact angle of particles along with fluid flow using eight new proposed fittings, including two miter fittings, three blinded fittings, one reducer elbow fitting, and two spherical elbows fittings in comparison with the standard 90° elbow was controlled. The numerical simulation of the gas-solid two-phase flow of non-spherical particles was studied using the Euler-Lagrange approach. To carry out the study numerical, first, the gas flow was modeled by the Navier-Stokes equations and the turbulent Reynolds stress model, and then the solid particles were injected using Newton's equation. Finally, the erosion was calculated using Grant and Tabakoff model of the restitution of particles of after hitting the wall and the erosion model of Oka. The amount of erosion caused by changes in the flow pattern was investigated to evaluate the performance of the new proposed fittings. Numerical results for the most critical mode (Vin = 27 m/s and DP = 300 μm) showed that the new proposed fittings increase the erosion resistance by 22.5 % to 39.6 % compared to the standard 90° elbow. Also, in this research, the effect of different parameters including flow velocity, particle diameter size, particle input rate, and particle rotation on erosion were investigated.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.