Hikaru Graeme Jolliffe , Maria A. Velazco-Roa , Luis Martin de Juan , Martin Prostredny , Carlota Mendez Torrecillas , Gavin Reynolds , Deborah McElhone , John Robertson
{"title":"Characterisation of a continuous blender: Impact of physical properties on mass holdup behaviour","authors":"Hikaru Graeme Jolliffe , Maria A. Velazco-Roa , Luis Martin de Juan , Martin Prostredny , Carlota Mendez Torrecillas , Gavin Reynolds , Deborah McElhone , John Robertson","doi":"10.1016/j.powtec.2024.120440","DOIUrl":null,"url":null,"abstract":"<div><div>Continuous blenders are a key unit operation in Continuous Direct Compaction, a route to solid oral dosage forms that is receiving significant interest. Mass holdup in these blenders is a crucial variable; understanding how it is influenced by material properties, equipment configuration and process settings is key. The present work evaluated a Gericke GCM-450 blender for range of outlet weir aperture geometries (angled or horizontal), material properties (pure components and blends) and process settings (throughput and impeller speed). Results show opposing mass holdup behaviour depending on weir choice, material density and flowability, likely linked to the propensity of the material to form an inclined powder surface that matches – or does not – the chosen weir geometry. The present work underscores the need for fundamental process phenomena understanding, especially when insight is sought for how blender performance varies across multiple dimensions (throughput, impeller speed, material properties) and discrete equipment choices (weir geometry).</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120440"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010842","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous blenders are a key unit operation in Continuous Direct Compaction, a route to solid oral dosage forms that is receiving significant interest. Mass holdup in these blenders is a crucial variable; understanding how it is influenced by material properties, equipment configuration and process settings is key. The present work evaluated a Gericke GCM-450 blender for range of outlet weir aperture geometries (angled or horizontal), material properties (pure components and blends) and process settings (throughput and impeller speed). Results show opposing mass holdup behaviour depending on weir choice, material density and flowability, likely linked to the propensity of the material to form an inclined powder surface that matches – or does not – the chosen weir geometry. The present work underscores the need for fundamental process phenomena understanding, especially when insight is sought for how blender performance varies across multiple dimensions (throughput, impeller speed, material properties) and discrete equipment choices (weir geometry).
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.