Liping Yu , Meiqin Zheng , Jiawei Wang , Zuoyi Yan , Wei Yao , Haohong Li , Huidong Zheng , Jingjing Chen
{"title":"Enhanced mixing characteristics of unbaffled U-shaped microreactor coupled oscillatory flow","authors":"Liping Yu , Meiqin Zheng , Jiawei Wang , Zuoyi Yan , Wei Yao , Haohong Li , Huidong Zheng , Jingjing Chen","doi":"10.1016/j.cep.2024.110009","DOIUrl":null,"url":null,"abstract":"<div><div>The Microscale Oscillatory Flow Reactor (MOFR) can achieve good plug flow and micromixing performance simultaneously at laminar net flow conditions. An unbaffled U-shaped microreactor coupled with oscillating flow technology was designed to study the macro and micromixing performance. Firstly, the influence of oscillations on the flow performance was studied to reveal the formation rule of vortex. The simulation results showed that the continuous formation and destruction of periodic vortexes occurred in the microreactor with oscillation. With the increase of oscillation intensity, the vortex size in the radial direction first gradually increased and then becomes stable, and gradually moved axially, resulting in axial diffusion. Secondly, the effect of oscillation on the macromixing and micromixing performance were investigated. The results showed that the coupling oscillation could greatly improve the macromixing and micromixing performance. The macromixing and micromixing performance were promoted simultaneously at lower oscillation intensity and then tended to be flat due to the axial diffusion at high oscillation intensity. When <em>φ</em>>6.05, the minimum micromixing time and the maximum number of tanks can be achieved at the same time. At a velocity ratio of about 23, <em>FoM</em> reached a maximum of about 3.5.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"205 ","pages":"Article 110009"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124003477","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The Microscale Oscillatory Flow Reactor (MOFR) can achieve good plug flow and micromixing performance simultaneously at laminar net flow conditions. An unbaffled U-shaped microreactor coupled with oscillating flow technology was designed to study the macro and micromixing performance. Firstly, the influence of oscillations on the flow performance was studied to reveal the formation rule of vortex. The simulation results showed that the continuous formation and destruction of periodic vortexes occurred in the microreactor with oscillation. With the increase of oscillation intensity, the vortex size in the radial direction first gradually increased and then becomes stable, and gradually moved axially, resulting in axial diffusion. Secondly, the effect of oscillation on the macromixing and micromixing performance were investigated. The results showed that the coupling oscillation could greatly improve the macromixing and micromixing performance. The macromixing and micromixing performance were promoted simultaneously at lower oscillation intensity and then tended to be flat due to the axial diffusion at high oscillation intensity. When φ>6.05, the minimum micromixing time and the maximum number of tanks can be achieved at the same time. At a velocity ratio of about 23, FoM reached a maximum of about 3.5.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.