Experimental characterization of aluminum/polymer/aluminum sandwich structures under various loading rates and temperatures: Establishing a constitutive relationship for LDPE
A. Bendarma , A. Rusinek , C. Czarnota , T. Jankowiak , R. Bernier , T. Lodygowski
{"title":"Experimental characterization of aluminum/polymer/aluminum sandwich structures under various loading rates and temperatures: Establishing a constitutive relationship for LDPE","authors":"A. Bendarma , A. Rusinek , C. Czarnota , T. Jankowiak , R. Bernier , T. Lodygowski","doi":"10.1016/j.compstruct.2024.118616","DOIUrl":null,"url":null,"abstract":"<div><div>Composite sandwich structures, for example Alucobond, have appeared as auspicious materials in a diversity of engineering applications due to their lightweight, high strength to weight ratio and thermal insulation properties. Analyzing their mechanical behavior in different loading rates is critical to optimizing their performance. This study inspects the mechanical response of Alucobond sandwich composite structures under dynamic and quasi-static compression loadings. Dynamic compression tests, carried out at high strain rates, and quasi-static compression tests, carried out at lower strain rates and temperatures, were used to predict the behavior of the material under different loading conditions. In addition, the mechanical properties of the low-density polyethylene (LDPE) core layer were characterized under dynamic and quasi-static loading conditions, with varying strain rates and temperatures, leading to the establishment of a constitutive relationship for the LDPE material. The comparative study of Alucobond and LDPE highlights the influence of material composition and loading conditions on the mechanical behavior of the composite sandwich structures.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"351 ","pages":"Article 118616"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026382232400744X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Composite sandwich structures, for example Alucobond, have appeared as auspicious materials in a diversity of engineering applications due to their lightweight, high strength to weight ratio and thermal insulation properties. Analyzing their mechanical behavior in different loading rates is critical to optimizing their performance. This study inspects the mechanical response of Alucobond sandwich composite structures under dynamic and quasi-static compression loadings. Dynamic compression tests, carried out at high strain rates, and quasi-static compression tests, carried out at lower strain rates and temperatures, were used to predict the behavior of the material under different loading conditions. In addition, the mechanical properties of the low-density polyethylene (LDPE) core layer were characterized under dynamic and quasi-static loading conditions, with varying strain rates and temperatures, leading to the establishment of a constitutive relationship for the LDPE material. The comparative study of Alucobond and LDPE highlights the influence of material composition and loading conditions on the mechanical behavior of the composite sandwich structures.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.